Skip to main content

Stellar Coronal and Wind Models: Impact on Exoplanets

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Exoplanets

Abstract

Surface magnetism is believed to be the main driver of coronal heating and stellar wind acceleration. Coronae are believed to be formed by plasma confined in closed magnetic coronal loops of the stars, with winds mainly originating in open magnetic field line regions. In this chapter, we review some basic properties of stellar coronae and winds and present some existing models. In the last part of this chapter, we discuss the effects of coronal winds on exoplanets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alvarado-Gómez JD, Hussain GAJ, Cohen O et al (2016) Simulating the environment around planet-hosting stars. I. Coronal structure. A&A 588:A28

    Google Scholar 

  • Anglada-Escudé G, Amado PJ, Barnes J et al (2016) A terrestrial planet candidate in a temperate orbit around Proxima Centauri. Nature 536:437–440

    Article  ADS  Google Scholar 

  • Arzoumanian D, Jardine M, Donati J, Morin J, Johnstone C (2011) The contribution of star-spots to coronal structure. MNRAS 410:2472–2480

    Article  ADS  Google Scholar 

  • Bagenal F (1992) Giant planet magnetospheres. Annu Rev Earth Planet Sci 20:289–328

    Article  ADS  Google Scholar 

  • Baraffe I, Selsis F, Chabrier G et al (2004) The effect of evaporation on the evolution of close-in giant planets. A&A 419:L13–L16

    Article  ADS  Google Scholar 

  • Bisikalo D, Kaygorodov P, Ionov D et al (2013) Three-dimensional gas dynamic simulation of the interaction between the exoplanet WASP-12b and its host star. ApJ 764:19

    Article  ADS  Google Scholar 

  • Boro Saikia S, Jeffers SV, Petit P et al (2015) Variable magnetic field geometry of the young sun HN Pegasi (HD 206860). A&A 573:A17

    Article  ADS  Google Scholar 

  • Boro Saikia S, Jeffers SV, Morin J et al (2016) A solar-like magnetic cycle on the mature K-dwarf 61 Cygni A (HD 201091). A&A 594:A29

    Article  ADS  Google Scholar 

  • Bourrier V, Lecavelier des Etangs A (2013) 3D model of hydrogen atmospheric escape from HD 209458b and HD 189733b: radiative blow-out and stellar wind interactions. A&A 557:A124

    Google Scholar 

  • Bourrier V, Lecavelier des Etangs A, Ehrenreich D, Tanaka YA, Vidotto AA (2016) An evaporating planet in the wind: stellar wind interactions with the radiatively braked exosphere of GJ 436 b. A&A 591:A121

    Google Scholar 

  • Bouvier J, Matt SP, Mohanty S et al (2014) Angular momentum evolution of young low-mass stars and brown dwarfs: observations and theory. Protostars and planets VI, pp 433–450

    Google Scholar 

  • Buzasi D (2013) Stellar magnetic fields as a heating source for extrasolar giant planets. ApJ 765:L25

    Article  ADS  Google Scholar 

  • Catala C, Donati JF, Shkolnik E, Bohlender D, Alecian E (2007) The magnetic field of the planet-hosting star τ Bootis. MNRAS 374:L42–L46

    Article  ADS  Google Scholar 

  • Cohen O, Drake JJ, Kashyap VL, Gombosi TI (2009) On the effect of magnetic spots on stellar winds and angular momentum loss. ApJ 699:1501

    Article  ADS  Google Scholar 

  • Cohen O, Drake JJ, Kashyap VL, Hussain GAJ, Gombosi TI (2010) The coronal structure of AB doradus. ApJ 721:80–89

    Article  ADS  Google Scholar 

  • Cohen O, Kashyap VL, Drake JJ et al (2011a) The dynamics of stellar coronae harboring hot Jupiters. I. A time-dependent magnetohydrodynamic simulation of the interplanetary environment in the HD 189733 planetary system. ApJ 733:67–+

    Google Scholar 

  • Cohen O, Kashyap VL, Drake JJ, Sokolov IV, Gombosi TI (2011b) The dynamics of stellar coronae harboring hot Jupiters. II. A space weather event on a hot Jupiter. ApJ 738:166–+

    Google Scholar 

  • Cranmer SR (2008) Turbulence-driven polar winds from T Tauri stars energized by magnetospheric accretion. ApJ 689:316–334

    Article  ADS  Google Scholar 

  • Cranmer SR (2009) Coronal holes. Living Rev Sol Phys 6:3–+

    Google Scholar 

  • Cranmer SR, Saar SH (2011) Testing a predictive theoretical model for the mass loss rates of cool stars. ApJ 741:54

    Article  ADS  Google Scholar 

  • Debes JH (2006) Measuring M dwarf winds with DAZ white dwarfs. ApJ 652:636–642

    Article  ADS  Google Scholar 

  • Demory BO, Ségransan D, Forveille T et al (2009) Mass-radius relation of low and very low-mass stars revisited with the VLTI. A&A 505:205–215

    Article  ADS  Google Scholar 

  • do Nascimento JD Jr, Vidotto AA, Petit P et al (2016) Magnetic field and wind of kappa ceti: toward the planetary habitability of the young sun when life arose on earth. ApJ 820:L15

    Google Scholar 

  • Donati JF, Brown SF (1997) Zeeman-Doppler imaging of active stars. V. Sensitivity of maximum entropy magnetic maps to field orientation. A&A 326:1135–1142

    Google Scholar 

  • Donati J, Landstreet JD (2009) Magnetic fields of nondegenerate stars. ARA&A 47:333–370

    Article  ADS  Google Scholar 

  • Donati JF, Collier Cameron A, Hussain GAJ, Semel M (1999) Magnetic topology and prominence patterns on AB Doradus. MNRAS 302:437–456

    Article  ADS  Google Scholar 

  • Donati JF, Collier Cameron A, Semel M et al (2003) Dynamo processes and activity cycles of the active stars AB Doradus, LQ Hydrae and HR 1099. MNRAS 345:1145–1186

    Article  ADS  Google Scholar 

  • Donati J, Morin J, Petit P et al (2008a) Large-scale magnetic topologies of early M dwarfs. MNRAS 390:545–560

    Article  ADS  Google Scholar 

  • Donati JF, Jardine MM, Gregory SG et al (2008b) Magnetospheric accretion on the T Tauri star BP Tauri. MNRAS 386:1234–1251

    Article  ADS  Google Scholar 

  • Donati JF, Moutou C, Farès R et al (2008c) Magnetic cycles of the planet-hosting star τ Bootis. MNRAS 385:1179–1185

    Article  ADS  Google Scholar 

  • Donati J, Skelly MB, Bouvier J et al (2010a) Magnetospheric accretion and spin-down of the prototypical classical T Tauri star AA Tau. MNRAS 409:1347–1361

    Article  ADS  Google Scholar 

  • Donati J, Skelly MB, Bouvier J et al (2010b) Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph. MNRAS 402:1426–1436

    Article  ADS  Google Scholar 

  • Donati JF, Bouvier J, Walter FM et al (2011a) Non-stationary dynamo and magnetospheric accretion processes of the classical T Tauri star V2129 Oph. MNRAS 412:2454–2468

    Article  ADS  Google Scholar 

  • Donati JF, Gregory SG, Alencar SHP et al (2011b) The large-scale magnetic field and poleward mass accretion of the classical T Tauri star TW Hya. MNRAS 417:472–487

    Article  ADS  Google Scholar 

  • Donati JF, Gregory SG, Montmerle T et al (2011c) The close classical T Tauri binary V4046 Sgr: complex magnetic fields and distributed mass accretion. MNRAS 417:1747–1759

    Article  ADS  Google Scholar 

  • Donati JF, Gregory SG, Alencar SHP et al (2012) Magnetometry of the classical T Tauri star GQ Lup: non-stationary dynamos and spin evolution of young Suns. MNRAS 425:2948–2963

    Article  ADS  Google Scholar 

  • Donati JF, Gregory SG, Alencar SHP et al (2013) Magnetospheric accretion on the fully convective classical T Tauri star DN Tau. MNRAS 436:881–897

    Article  ADS  Google Scholar 

  • Falceta-Gonçalves D, Vidotto AA, Jatenco-Pereira V (2006) On the magnetic structure and wind parameter profiles of Alfvén wave driven winds in late-type supergiant stars. MNRAS 368:1145–1150

    Article  ADS  Google Scholar 

  • Fares R, Donati J, Moutou C et al (2009) Magnetic cycles of the planet-hosting star τ Bootis - II. A second magnetic polarity reversal. MNRAS 398:1383–1391

    Google Scholar 

  • Fares R, Donati J, Moutou C et al (2010) Searching for star-planet interactions within the magnetosphere of HD189733. MNRAS 406:409–419

    Article  ADS  Google Scholar 

  • Fares R, Donati JF, Moutou C et al (2012) Magnetic field, differential rotation and activity of the hot-Jupiter-hosting star HD 179949. MNRAS 423:1006–1017

    Article  ADS  Google Scholar 

  • Fares R, Moutou C, Donati JF et al (2013) A small survey of the magnetic fields of planet-host stars. MNRAS 435:1451–1462

    Article  ADS  Google Scholar 

  • Folsom CP, Petit P, Bouvier J et al (2016) The evolution of surface magnetic fields in young solar-type stars – I. The first 250 Myr. MNRAS 457:580–607

    Article  ADS  Google Scholar 

  • Gaidos EJ, Guedel M, Blake GA (2000) The faint young sun paradox: an observational test of an alternative solar model. Geophys Res Lett 27:501–504

    Article  ADS  Google Scholar 

  • Garraffo C, Drake JJ, Cohen O (2015) The dependence of stellar mass and angular momentum losses on latitude and the interaction of active region and dipolar magnetic fields. ApJ 813:40

    Article  ADS  Google Scholar 

  • Grießmeier JM, Stadelmann A, Motschmann U et al (2005) Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones. Astrobiology 5:587–603

    Article  ADS  Google Scholar 

  • Grießmeier JM, Stadelmann A, Grenfell JL, Lammer H, Motschmann U (2009) On the protection of extrasolar Earth-like planets around K/M stars against galactic cosmic rays. Icarus 199:526–535

    Article  ADS  Google Scholar 

  • Güdel M, Audard M, Reale F, Skinner SL, Linsky JL (2004) Flares from small to large: X-ray spectroscopy of Proxima Centauri with XMM-Newton. A&A 416:713–732

    Article  ADS  Google Scholar 

  • Guedel M (2004) X-ray astronomy of stellar coronae. A&A Rev 12:71–237

    ADS  Google Scholar 

  • Guedel M, Nazé Y (2009) X-ray spectroscopy of stars. A&A Rev 17:309–408

    Article  ADS  Google Scholar 

  • Guinan EF, Ribas I, Harper GM (2003) Far-ultraviolet emissions of the sun in time: probing solar magnetic activity and effects on evolution of paleoplanetary atmospheres. ApJ 594:561–572

    Article  ADS  Google Scholar 

  • Hartmann L, MacGregor KB (1980) Momentum and energy deposition in late-type stellar atmospheres and winds. ApJ 242:260–282

    Article  ADS  Google Scholar 

  • Hollweg JV (1973) ALFVtN waves in a two-fluid model of the solar wind. ApJ 181:547–566

    Article  ADS  Google Scholar 

  • Holzer TE, Fla T, Leer E (1983) Alfven waves in stellar winds. ApJ 275:808–835

    Article  ADS  Google Scholar 

  • Hussain GAJ, Brickhouse NS, Dupree AK et al (2005) Inferring coronal structure from X-ray light curves and doppler shifts: a chandra study of AB doradus. ApJ 621:999–1008

    Article  ADS  Google Scholar 

  • Hussain GAJ, Jardine M, Donati JF et al (2007) The coronal structure of AB Doradus determined from contemporaneous Doppler imaging and X-ray spectroscopy. MNRAS 377:1488–1502

    Article  ADS  Google Scholar 

  • Hussain GAJ, Collier Cameron A, Jardine MM et al (2009) Surface magnetic fields on two accreting TTauri stars: CVCha and CRCha. MNRAS 398:189–200

    Article  ADS  Google Scholar 

  • Ip WH, Kopp A, Hu JH (2004) On the star-magnetosphere interaction of close-in exoplanets. ApJ 602:L53–L56

    Article  ADS  Google Scholar 

  • Jardine M (2004) Coronal stripping in supersaturated stars. A&A 414:L5–L8

    Article  ADS  Google Scholar 

  • Jardine M, Vidotto AA, van Ballegooijen A et al (2013) Influence of surface stressing on stellar coronae and winds. MNRAS 431:528–538

    Article  ADS  Google Scholar 

  • Jatenco-Pereira V, Opher R (1989) Effect of diverging magnetic fields on mass loss in late-type giant stars. A&A 209:327–336

    ADS  Google Scholar 

  • Jeffers SV, Petit P, Marsden SC et al (2014) ε Eridani: an active K dwarf and a planet hosting star?. The variability of its large-scale magnetic field topology. A&A 569:A79

    Google Scholar 

  • Jeffries RD, Jackson RJ, Briggs KR, Evans PA, Pye JP (2011) Investigating coronal saturation and supersaturation in fast-rotating M-dwarf stars. MNRAS 411:2099–2112

    Article  ADS  Google Scholar 

  • Johns-Krull CM (2007) The magnetic fields of classical T Tauri stars. ApJ 664:975–985

    Article  ADS  Google Scholar 

  • Johns-Krull CM, Valenti JA, Hatzes AP, Kanaan A (1999) Spectropolarimetry of magnetospheric accretion on the classical T Tauri star BP Tauri. ApJ 510:L41–L44

    Article  ADS  Google Scholar 

  • Johnstone CP, Guedel M (2015) The coronal temperatures of low-mass main-sequence stars. A&A 578:A129

    Article  ADS  Google Scholar 

  • Johnstone C, Jardine M, Mackay DH (2010) Modelling stellar coronae from surface magnetograms: the role of missing magnetic flux. MNRAS 404:101–109

    ADS  Google Scholar 

  • Johnstone CP, Guedel M, Brott I, Lüftinger T (2015a) Stellar winds on the main-sequence. II. The evolution of rotation and winds. A&A 577:A28

    Google Scholar 

  • Johnstone CP, Guedel M, Lüftinger T, Toth G, Brott I (2015b) Stellar winds on the main-sequence. I. Wind model. A&A 577:A27

    Google Scholar 

  • Keppens R, Goedbloed JP (2000) Stellar winds, dead zones, and coronal mass ejections. ApJ 530:1036–1048

    Article  ADS  Google Scholar 

  • Khodachenko ML, Ribas I, Lammer H et al (2007) Coronal mass ejection (CME) activity of low mass M stars as an important factor for the habitability of terrestrial exoplanets. I. CME impact on expected magnetospheres of earth-like exoplanets in close-in habitable zones. Astrobiology 7:167–184

    Google Scholar 

  • Khodachenko ML, Alexeev I, Belenkaya E et al (2012) Magnetospheres of “Hot Jupiters”: the importance of magnetodisks in shaping a magnetospheric obstacle. ApJ 744:70

    Article  ADS  Google Scholar 

  • Kislyakova KG, Holmström M, Lammer H, Odert P, Khodachenko ML (2014) Magnetic moment and plasma environment of HD 209458b as determined from Lyα observations. Science 346:981–984

    Article  ADS  Google Scholar 

  • Kraft RP (1967) Studies of stellar rotation. V. The dependence of rotation on age among solar-type stars. ApJ 150:551–+

    Google Scholar 

  • Lai D, Helling C, van den Heuvel EPJ (2010) Mass transfer, transiting stream, and magnetopause in close-in exoplanetary systems with applications to WASP-12. ApJ 721:923–928

    Article  ADS  Google Scholar 

  • Lammer H, Selsis F, Ribas I et al (2003) Atmospheric loss of exoplanets resulting from stellar X-ray and extreme-ultraviolet heating. ApJ 598:L121–L124

    Article  ADS  Google Scholar 

  • Lammer H, Lichtenegger HIM, Kulikov YN et al (2007) Coronal mass ejection (CME) activity of low Mass M stars as an important factor for the habitability of terrestrial exoplanets. II. CME-induced ion pick up of earth-like exoplanets in close-in habitable zones. Astrobiology 7:185–207

    Google Scholar 

  • Lang P, Jardine M, Morin J et al (2014) Modelling the hidden magnetic field of low-mass stars. MNRAS 439:2122–2131

    Article  ADS  Google Scholar 

  • Lanza AF (2009) Stellar coronal magnetic fields and star-planet interaction. A&A 505:339–350

    Article  ADS  MATH  Google Scholar 

  • Li SL, Miller N, Lin DNC, Fortney JJ (2010) WASP-12b as a prolate, inflated and disrupting planet from tidal dissipation. Nature 463:1054–1056

    Article  ADS  Google Scholar 

  • Lim J, White SM (1996) Limits to mass outflows from late-type dwarf stars. ApJ 462:L91+

    Google Scholar 

  • Lim J, White SM, Slee OB (1996) The radio properties of the dMe flare star proxima centauri. ApJ 460:976–+

    Google Scholar 

  • Lima JJG, Priest ER, Tsinganos K (2001) An analytical MHD wind model with latitudinal dependences obtained using separation of the variables. A&A 371:240–249

    Article  ADS  MATH  Google Scholar 

  • Llama J, Vidotto AA, Jardine M et al (2013) Exoplanet transit variability: bow shocks and winds around HD 189733b. MNRAS 436:2179–2187

    Article  ADS  Google Scholar 

  • Lovelace RVE, Romanova MM, Barnard AW (2008) Planet migration and disc destruction due to magneto-centrifugal stellar winds. MNRAS 389:1233–1239

    Article  ADS  Google Scholar 

  • Lüftinger T, Vidotto AA, Johnstone CP (2015) Magnetic fields and winds of planet hosting stars. In: Lammer H, Khodachenko M (eds) Astrophysics and space science library, astrophysics and space science library, vol 411, p 37, doi:10.1007/978-3-319-09749-7_3

  • Maggio A, Sanz-Forcada J, Scelsi L (2011) Photospheric and coronal abundances in solar-type stars: the peculiar case of τ Bootis. A&A 527:A144

    Article  ADS  Google Scholar 

  • Marsden SC, Donati JF, Semel M, Petit P, Carter BD (2006) Surface differential rotation and photospheric magnetic field of the young solar-type star HD 171488 (V889 Her). MNRAS 370:468–476

    Article  ADS  Google Scholar 

  • Marsden SC, Jardine MM, Ramírez Vélez JC et al (2011) Magnetic fields and differential rotation on the pre-main sequence – I. The early-G star HD 141943 – brightness and magnetic topologies. MNRAS 413:1922–1938

    Article  ADS  Google Scholar 

  • Matsakos T, Uribe A, Königl A (2015) Classification of magnetized star-planet interactions: bow shocks, tails, and inspiraling flows. A&A 578:A6

    Article  ADS  Google Scholar 

  • Matsumoto T, Suzuki TK (2012) Connecting the sun and the solar wind: the first 2.5-dimensional self-consistent MHD simulation under the Alfvén wave scenario. ApJ 749:8

    Google Scholar 

  • Matsumoto T, Suzuki TK (2014) Connecting the sun and the solar wind: the self-consistent transition of heating mechanisms. MNRAS 440:971–986

    Article  ADS  Google Scholar 

  • Matt S, Pudritz RE (2005) Accretion-powered stellar winds as a solution to the stellar angular momentum problem. ApJ 632:L135–L138

    Article  ADS  Google Scholar 

  • Matt SP, MacGregor KB, Pinsonneault MH, Greene TP (2012) Magnetic braking formulation for Sun-like stars: dependence on dipole field strength and rotation rate. ApJ 754:L26

    Article  ADS  Google Scholar 

  • Mestel L (1968) Magnetic braking by a stellar wind-I. MNRAS 138:359–+

    Google Scholar 

  • Morgenthaler A, Petit P, Morin J et al (2011) Direct observation of magnetic cycles in Sun-like stars. Astron Nachr 332:866

    Article  ADS  Google Scholar 

  • Morgenthaler A, Petit P, Saar S et al (2012) Long-term magnetic field monitoring of the Sun-like star ξ Bootis A. A&A 540:A138

    Article  ADS  Google Scholar 

  • Morin J, Donati J, Forveille T et al (2008a) The stable magnetic field of the fully convective star V374 Peg. MNRAS 384:77–86

    Article  ADS  Google Scholar 

  • Morin J, Donati J, Petit P et al (2008b) Large-scale magnetic topologies of mid M dwarfs. MNRAS 390:567–581

    Article  ADS  Google Scholar 

  • Morin J, Donati J, Petit P et al (2010) Large-scale magnetic topologies of late M dwarfs. MNRAS 407:2269–2286

    Article  ADS  Google Scholar 

  • Morin J, Jardine M, Reiners A et al (2013) Multiple views of magnetism in cool stars. Astron Nachr 334:48

    Article  ADS  Google Scholar 

  • Nicholson BA, Vidotto AA, Mengel M et al (2016) Temporal variability of the wind from the star τ Boötis. MNRAS 459:1907–1915

    Article  ADS  Google Scholar 

  • Pallavicini R, Golub L, Rosner R et al (1981) Relations among stellar X-ray emission observed from Einstein, stellar rotation and bolometric luminosity. ApJ 248:279–290

    Article  ADS  Google Scholar 

  • Parsons SG, Marsh TR, Gänsicke BT et al (2012) A precision study of two eclipsing white dwarf plus M dwarf binaries. MNRAS 420:3281–3297

    ADS  Google Scholar 

  • Petit P, Dintrans B, Solanki SK et al (2008) Toroidal versus poloidal magnetic fields in Sun-like stars: a rotation threshold. MNRAS 388:80–88

    Article  ADS  Google Scholar 

  • Petit P, Dintrans B, Morgenthaler A et al (2009) A polarity reversal in the large-scale magnetic field of the rapidly rotating sun HD 190771. A&A 508:L9–L12

    Article  ADS  Google Scholar 

  • Pevtsov AA, Fisher GH, Acton LW et al (2003) The relationship between X-ray radiance and magnetic flux. ApJ 598:1387–1391

    Article  ADS  Google Scholar 

  • Pillitteri I, Wolk SJ, Lopez-Santiago J et al (2014) The corona of HD 189733 and its X-ray activity. ApJ 785:145

    Article  ADS  Google Scholar 

  • Pinto RF, Brun AS, Jouve L, Grappin R (2011) Coupling the solar dynamo and the corona: wind properties, mass, and momentum losses during an activity cycle. ApJ 737:72–+

    Google Scholar 

  • Pizzolato N, Maggio A, Micela G, Sciortino S, Ventura P (2003) The stellar activity-rotation relationship revisited: dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs. A&A 397:147–157

    Article  ADS  Google Scholar 

  • Pneuman GW, Kopp RA (1971) Gas-magnetic field interactions in the solar corona. Sol Phys 18:258–270

    Article  ADS  Google Scholar 

  • Reiners A, Basri G (2008) The moderate magnetic field of the flare star Proxima Centauri. A&A 489:L45–L48

    Article  ADS  Google Scholar 

  • Reiners A, Basri G, Browning M (2009) Evidence for magnetic flux saturation in rapidly rotating M stars. ApJ 692:538–545

    Article  ADS  Google Scholar 

  • Reiners A, Schüssler M, Passegger VM (2014) Generalized investigation of the rotation-activity relation: favoring rotation period instead of rossby number. ApJ 794:144

    Article  ADS  Google Scholar 

  • Réville V, Brun AS, Matt SP, Strugarek A, Pinto RF (2015) The effect of magnetic topology on thermally driven wind: toward a general formulation of the braking law. ApJ 798:116

    Article  ADS  Google Scholar 

  • Ribas I, Guinan EF, Guedel M, Audard M (2005) Evolution of the solar activity over time and effects on planetary atmospheres. I. High-energy irradiances (1-1700 Å). ApJ 622:680–694

    Article  ADS  Google Scholar 

  • Ribas I, Porto de Mello GF, Ferreira LD et al (2010) Evolution of the solar activity over time and effects on planetary atmospheres. II. κ 1 Ceti, an analog of the sun when life arose on earth. ApJ 714:384

    Google Scholar 

  • Ribas I, Bolmont E, Selsis F et al (2016) The habitability of Proxima Centauri b. I. Irradiation, rotation and volatile inventory from formation to the present. A&A 596:A111

    Google Scholar 

  • Saar SH (1996) Recent magnetic fields measurements of stellar. In: Strassmeier KG, Linsky JL (eds) Stellar Surface Structure, IAU Symposium, vol 176, p 237

    Google Scholar 

  • Saar SH (2001) Recent measurements of (and inferences about) magnetic fields on K and M stars (CD-ROM directory: contribs/saar1). In: Garcia Lopez RJ, Rebolo R, Zapaterio Osorio MR (eds) 11th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, Astronomical Society of the Pacific Conference Series, vol 223, p 292

    Google Scholar 

  • Sanz-Forcada J, Micela G, Ribas I et al (2011) Estimation of the XUV radiation onto close planets and their evaporation. A&A 532:A6

    Article  ADS  Google Scholar 

  • Scandariato G, Maggio A, Lanza AF et al (2013) A coordinated optical and X-ray spectroscopic campaign on HD 179949: searching for planet-induced chromospheric and coronal activity. A&A 552:A7

    Article  ADS  Google Scholar 

  • See V, Jardine M, Vidotto AA et al (2014) The effects of stellar winds on the magnetospheres and potential habitability of exoplanets. A&A 570:A99

    Article  ADS  Google Scholar 

  • Shkolnik E, Bohlender DA, Walker GAH, Collier Cameron A (2008) The on/off nature of star-planet interactions. ApJ 676:628–638

    Article  ADS  Google Scholar 

  • Skumanich A (1972) Time scales for CA II emission decay, rotational braking, and lithium depletion. ApJ 171:565–+

    Google Scholar 

  • Sokolov IV, van der Holst B, Oran R et al (2013) Magnetohydrodynamic waves and coronal heating: unifying empirical and MHD turbulence models. ApJ 764:23

    Article  ADS  Google Scholar 

  • Solanki SK (1994) Must the magnetic field saturate on rapidly rotating stars? In: Caillault JP (ed) Cool Stars, Stellar Systems, and the Sun, Astronomical Society of the Pacific Conference Series, vol 64, p 477

    ADS  Google Scholar 

  • Sterenborg MG, Cohen O, Drake JJ, Gombosi TI (2011) Modeling the young Sun’s solar wind and its interaction with Earth’s paleomagnetosphere. J Geophys Res (Space Physics) 116:A01217

    Article  ADS  Google Scholar 

  • Strugarek A, Brun AS, Matt SP, Réville V (2015) Magnetic games between a planet and its host star: the key role of topology. ApJ 815:111

    Article  ADS  Google Scholar 

  • Suzuki TK, Imada S, Kataoka R et al (2013) Saturation of stellar winds from young suns. PASJ 65:98

    Article  ADS  Google Scholar 

  • Telleschi A, Guedel M, Briggs K et al (2005) Coronal evolution of the sun in time: high-resolution X-ray spectroscopy of solar analogs with different ages. ApJ 622:653–679

    Article  ADS  Google Scholar 

  • Testa P, Saar SH, Drake JJ (2015) Stellar activity and coronal heating: an overview of recent results. Philos Trans R Soc Lond A 373:20140,259–20140,259

    Article  Google Scholar 

  • Tsinganos K, Low BC (1989) Steady hydromagnetic flows in open magnetic fields. II – global flows with static zones. ApJ 342:1028–1048

    Google Scholar 

  • van den Oord GHJ, Doyle JG (1997) Constraints on mass loss from dMe stars: theory and observations. A&A 319:578–588

    ADS  Google Scholar 

  • van der Holst B, Manchester WB, Frazin RA et al (2010) A data-driven, two-temperature solar wind model with Alfvén waves. ApJ 725:1373–1383

    Article  ADS  Google Scholar 

  • van der Holst B, Sokolov IV, Meng X et al (2014) Alfvén wave solar model (AWSoM): coronal heating. ApJ 782:81

    Article  ADS  Google Scholar 

  • Vidotto AA (2016) The magnetic field vector of the Sun-as-a-star. MNRAS 459:1533–1542

    Article  ADS  Google Scholar 

  • Vidotto AA, Donati JF (2017) Predicting radio emission from the newborn hot Jupiter V830 Tau and its host star. A&A 602:39

    Article  ADS  Google Scholar 

  • Vidotto AA, Jatenco-Pereira V (2006) The effects of Alfvén waves and radiation pressure in dusty winds of late-type stars. II. Dust-cyclotron damping. ApJ 639:416–422

    Google Scholar 

  • Vidotto AA, Opher M, Jatenco-Pereira V, Gombosi TI (2009a) Simulations of winds of weak-lined T Tauri stars: the magnetic field geometry and the influence of the wind on giant planet migration. ApJ 703:1734–1742

    Article  ADS  Google Scholar 

  • Vidotto AA, Opher M, Jatenco-Pereira V, Gombosi TI (2009b) Three-dimensional numerical simulations of magnetized winds of solar-like stars. ApJ 699:441–452

    Article  ADS  Google Scholar 

  • Vidotto AA, Jardine M, Helling C (2010a) Early UV ingress in WASP-12b: measuring planetary magnetic fields. ApJ 722:L168–L172

    Article  ADS  Google Scholar 

  • Vidotto AA, Opher M, Jatenco-Pereira V, Gombosi TI (2010b) Simulations of winds of weak-lined T Tauri stars. II. The effects of a tilted magnetosphere and planetary interactions. ApJ 720:1262–1280

    Google Scholar 

  • Vidotto AA, Jardine M, Helling C (2011a) Prospects for detection of exoplanet magnetic fields through bow-shock observations during transits. MNRAS 411:L46–L50

    Article  ADS  Google Scholar 

  • Vidotto AA, Jardine M, Opher M, Donati JF, Gombosi TI (2011b) Powerful winds from low-mass stars: V374 Peg. MNRAS 412:351–362

    Article  ADS  Google Scholar 

  • Vidotto AA, Llama J, Jardine M, Helling C, Wood K (2011c) Shock formation around planets orbiting M-dwarf stars. Astron Nachr 332:1055

    Article  ADS  Google Scholar 

  • Vidotto AA, Fares R, Jardine M et al (2012) The stellar wind cycles and planetary radio emission of the τ Boo system. MNRAS 423:3285–3298

    Article  ADS  Google Scholar 

  • Vidotto AA, Jardine M, Morin J et al (2013) Effects of M dwarf magnetic fields on potentially habitable planets. A&A 557:A67

    Article  ADS  Google Scholar 

  • Vidotto AA, Gregory SG, Jardine M et al (2014a) Stellar magnetism: empirical trends with age and rotation. MNRAS 441:2361–2374

    Article  ADS  Google Scholar 

  • Vidotto AA, Jardine M, Morin J et al (2014b) M-dwarf stellar winds: the effects of realistic magnetic geometry on rotational evolution and planets. MNRAS 438:1162–1175

    Article  ADS  Google Scholar 

  • Vidotto AA, Fares R, Jardine M, Moutou C, Donati JF (2015) On the environment surrounding close-in exoplanets. MNRAS 449:4117–4130

    Article  ADS  Google Scholar 

  • Vidotto AA, Donati JF, Jardine M et al (2016) Could a change in magnetic field geometry cause the break in the wind-activity relation? MNRAS 455:L52–L56

    Article  ADS  Google Scholar 

  • Villadsen J, Hallinan G, Bourke S, Guedel M, Rupen M (2014) First detection of thermal radio emission from solar-type stars with the Karl G. Jansky very large array. ApJ 788:112

    Google Scholar 

  • Waite IA, Marsden SC, Carter BD et al (2011) Magnetic fields and differential rotation on the pre-main sequence – III. The early-G star HD 106506. MNRAS 413:1949–1960

    Article  ADS  Google Scholar 

  • Waite IA, Marsden SC, Carter BD et al (2015) Magnetic fields on young, moderately rotating Sun-like stars – I. HD 35296 and HD 29615. MNRAS 449:8–24

    Article  ADS  Google Scholar 

  • Waite IA, Marsden SC, Carter BD et al (2017) Magnetic fields on young, moderately rotating Sun-like stars – II. EK Draconis (HD 129333). MNRAS 465:2076–2091

    Article  ADS  Google Scholar 

  • Wargelin BJ, Drake JJ (2002) Stringent X-ray constraints on mass loss from Proxima Centauri. ApJ 578:503–514

    Article  ADS  Google Scholar 

  • Washimi H, Shibata S (1993) Thermo-centrifugal wind from a rotating magnetic dipole. MNRAS 262:936–944

    Article  ADS  Google Scholar 

  • West AA, Hawley SL, Bochanski JJ et al (2008) Constraining the age-activity relation for cool stars: the sloan digital sky survey data release 5 low-mass star spectroscopic sample. AJ 135:785–795

    Article  ADS  Google Scholar 

  • Wood BE (2004) Astrospheres and solar-like stellar winds. Living Rev Sol Phys 1:2–+

    Google Scholar 

  • Wood BE, Linsky JL (2010) Resolving the ξ Boo binary with chandra, and revealing the spectral type dependence of the coronal “FIP Effect”. ApJ 717:1279–1290

    Article  ADS  Google Scholar 

  • Wood BE, Linsky JL, Müller H, Zank GP (2001) Observational estimates for the mass-loss rates of α Centauri and Proxima Centauri using hubble space telescope Lyα spectra. ApJ 547:L49–L52

    Article  ADS  Google Scholar 

  • Wood BE, Müller HR, Zank GP, Linsky JL (2002) Measured mass-loss rates of solar-like stars as a function of age and activity. ApJ 574:412–425

    Article  ADS  Google Scholar 

  • Wood BE, Müller HR, Zank GP, Linsky JL, Redfield S (2005) New mass-loss measurements from astrospheric Lyα absorption. ApJ 628:L143–L146

    Article  ADS  Google Scholar 

  • Wood BE, Müller HR, Redfield S, Edelman E (2014) Evidence for a weak wind from the young sun. ApJ 781:L33

    Article  ADS  Google Scholar 

  • Wright NJ, Drake JJ, Mamajek EE, Henry GW (2011) The stellar-activity-rotation relationship and the evolution of stellar dynamos. ApJ 743:48

    Article  ADS  Google Scholar 

  • Yang SH, Zhang J, Jin CL, Li LP, Duan HY (2009) Response of the solar atmosphere to magnetic field evolution in a coronal hole region. A&A 501:745–753

    Article  ADS  Google Scholar 

  • Zendejas J, Segura A, Raga AC (2010) Atmospheric mass loss by stellar wind from planets around main sequence M stars. Icarus 210:539–544

    Article  ADS  Google Scholar 

  • Zieger B, Vogt J, Glassmeier KH (2006) Scaling relations in the paleomagnetosphere derived from MHD simulations. J Geophys Res (Space Physics) 111:A06203

    Article  ADS  Google Scholar 

  • Zuluaga JI, Bustamante S, Cuartas PA, Hoyos JH (2013) The influence of thermal evolution in the magnetic protection of terrestrial planets. ApJ 770:23

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aline A. Vidotto .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Cite this entry

Vidotto , A. (2018). Stellar Coronal and Wind Models: Impact on Exoplanets. In: Deeg, H., Belmonte, J. (eds) Handbook of Exoplanets . Springer, Cham. https://doi.org/10.1007/978-3-319-30648-3_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30648-3_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30648-3

  • Online ISBN: 978-3-319-30648-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Stellar Coronal and Wind Models: Impact on Exoplanets
    Published:
    12 October 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_26-2

  2. Original

    Stellar Coronal and Wind Models: Impact on Exoplanets
    Published:
    07 July 2017

    DOI: https://doi.org/10.1007/978-3-319-30648-3_26-1