Skip to main content

Diabetes Secondary to Endocrine Disorders and PCOS

Diabetes Complications, Comorbidities and Related Disorders

Part of the book series: Endocrinology ((ENDOCR))

  • 500 Accesses

Abstract

A number of hormones participate physiologically in the regulation of blood glucose levels, and alterations in their production may cause hyperglycemia. In particular, hormones involved in the counterregulatory response to insulin, such as glucagon, catecholamines, cortisol, or GH, have a potent hyperglycemic action. Although abnormal overproduction of these hormones is rare, these forms of secondary diabetes should be recognized because they merit specific treatments and can even be cured by appropriate management. Exogenous glucocorticoid excess is a more common cause of iatrogenic secondary diabetes, which may especially occur in subjects who have risk factors for type 2 diabetes. Somatostatin-secreting tumors, which are very rare, may also cause hyperglycemia, due to inhibition of insulin secretion. Similarly, treatment of some endocrine disorders by somatostatin analogs, particularly pasireotide, may induce hyperglycemia and secondary diabetes. Moreover, several other hormones modulate metabolic processes, with potential alterations of glucose levels in the case of abnormalities in their production. In particular, thyroid hormones regulate several steps of the glucose metabolism, with increased supply of glucose to tissues. In physiological conditions, these effects allow the body to meet the increased energy demand induced by thyroid hormones. However, thyroid dysfunction, especially hyperthyroidism, is associated with frequent alteration of glucose tolerance, with complex interactions with insulin action. There is evidence that sex hormones, by mechanisms that are still not completely understood, may also affect metabolic processes, including impaired insulin sensitivity. In particular, abnormalities in serum androgens are frequently associated with altered glucose levels. In this regard, there is a striking sexual dimorphism, as glucose intolerance is associated with reduced serum testosterone in men but with increased serum testosterone in women. This latter phenomenon may be especially found in women with polycystic ovary syndrome (PCOS), who are often insulin resistant. However, PCOS is a heterogeneous condition. Distinguishing the different clinical phenotypes of this syndrome is helpful in estimating the individual risk of metabolic abnormalities of these subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akmal M, Massry SG, Goldstein DA, Fanti P, Weisz A, DeFronzo RA. Role of parathyroid hormone in the glucose intolerance of chronic renal failure. J Clin Invest. 1985;75(3):1037–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  • Bolli GB, Fanelli CG. Physiology of glucose counterregulation to hypoglycemia. Endocrinol Metab Clin North Am. 1999;28(3):467–93.

    Article  CAS  PubMed  Google Scholar 

  • Chaker L, Ligthart S, Korevaar TI, Hofman A, Franco OH, Peeters RP, et al. Thyroid function and risk of type 2 diabetes: a population-based prospective cohort study. BMC Med. 2016;14(1):150.

    Article  PubMed  PubMed Central  Google Scholar 

  • Corona G, Monami M, Rastrelli G, Aversa A, Sforza A, Lenzi A, et al. Type 2 diabetes mellitus and testosterone: a meta-analysis study. Int J Androl. 2011;34(6 Pt 1):528–40.

    Article  CAS  PubMed  Google Scholar 

  • Dal J, Feldt-Rasmussen U, Andersen M, Kristensen LØ, Laurberg P, Pedersen L, et al. Acromegaly incidence, prevalence, complications and long-term prognosis: a nationwide cohort study. Eur J Endocrinol. 2016;175(3):181–90.

    Article  CAS  PubMed  Google Scholar 

  • Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33(6):981–1030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimitriadis G, Mitrou P, Lambadiari V, Boutati E, Maratou E, Panagiotakos DB, et al. Insulin action in adipose tissue and muscle in hypothyroidism. J Clin Endocrinol Metab. 2006;91(12):4930–7.

    Article  CAS  PubMed  Google Scholar 

  • Dimopoulou C, Ceausu I, Depypere H, Lambrinoudaki I, Mueck A, Pérez-López FR, et al. EMAS position statement: testosterone replacement therapy in the aging male. Maturitas. 2016;84:94–9.

    Article  CAS  PubMed  Google Scholar 

  • Escobar-Morreale HF, Roldán-Martín MB. Type 1 diabetes and polycystic ovary syndrome: systematic review and meta-analysis. Diabetes Care. 2016;39(4):639–48.

    Article  CAS  PubMed  Google Scholar 

  • Ezeh U, Yildiz BO, Azziz R. Referral bias in defining the phenotype and prevalence of obesity in polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(6):E1088–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feelders RA, Pulgar SJ, Kempel A, Pereira AM. The burden of Cushing’s disease: clinical and health-related quality of life aspects. Eur J Endocrinol. 2012;167(3):311–26.

    Article  CAS  PubMed  Google Scholar 

  • Fieffe S, Morange I, Petrossians P, Chanson P, Rohmer V, Cortet C, Borson-Chazot F, Brue T, Delemer B, French Acromegaly Registry. Diabetes in acromegaly, prevalence, risk factors, and evolution: data from the French Acromegaly Registry. Eur J Endocrinol. 2011;164(6):877–84.

    Article  CAS  PubMed  Google Scholar 

  • Glintborg D, Hass Rubin K, Nybo M, Abrahamsen B, Andersen M. Morbidity and medicine prescriptions in a nationwide Danish population of patients diagnosed with polycystic ovary syndrome. Eur J Endocrinol. 2015;172(5):627–38.

    Article  CAS  PubMed  Google Scholar 

  • Grossmann M. Testosterone and glucose metabolism in men: current concepts and controversies. J Endocrinol. 2014;220(3):R37–55.

    Article  CAS  PubMed  Google Scholar 

  • Han C, He X, Xia X, Li Y, Shi X, Shan Z, et al. Subclinical hypothyroidism and type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2015;10(8):e0135233.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber A, Menconi F, Corathers S, Jacobson EM, Tomer Y. Joint genetic susceptibility to type 1 diabetes and autoimmune thyroiditis: from epidemiology to mechanisms. Endocr Rev. 2008;29(6):697–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karakosta P, Alegakis D, Georgiou V, Roumeliotaki T, Fthenou E, Vassilaki M, et al. Thyroid dysfunction and autoantibodies in early pregnancy are associated with increased risk of gestational diabetes and adverse birth outcomes. J Clin Endocrinol Metab. 2012;97(12):4464–72.

    Article  CAS  PubMed  Google Scholar 

  • Krejs GJ, Orci L, Conlon JM, Ravazzola M, Davis GR, Raskin P, et al. Somatostatinoma syndrome. Biochemical, morphologic and clinical features. N Engl J Med. 1979;301(6):285–92.

    Article  CAS  PubMed  Google Scholar 

  • Kumagai E, Adachi H, Jacobs DR Jr, Hirai Y, Enomoto M, Fukami A, et al. Plasma aldosterone levels and development of insulin resistance: prospective study in a general population. Hypertension. 2011;58(6):1043–8.

    Article  CAS  PubMed  Google Scholar 

  • Legro RS, Driscoll D, Strauss JF 3rd, Fox J, Dunaif A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc Natl Acad Sci USA. 1998;95(25):14956–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenzen S, Bailey CJ. Thyroid hormones, gonadal and adrenocortical steroids and the function of the islets of Langerhans. Endocr Rev. 1984;5(3):411–34.

    Article  CAS  PubMed  Google Scholar 

  • Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106(1):6–15.

    Article  PubMed  Google Scholar 

  • Luther JM. Effects of aldosterone on insulin sensitivity and secretion. Steroids. 2014;91:54–60.

    Article  CAS  PubMed  Google Scholar 

  • Moghetti P, Tosi F, Bonin C, Di Sarra D, Fiers T, Kaufman JM, et al. Divergences in insulin resistance between the different phenotypes of the polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(4):E628–37.

    Article  CAS  PubMed  Google Scholar 

  • Moghetti P, Carmina E, De Leo V, Lanzone A, Orio F, Pasquali R, et al. How to manage the reproductive issues of PCOS: a 2015 integrated endocrinological and gynecological consensus statement of the Italian Society of Endocrinology. J Endocrinol Invest. 2015;38(9):1025–37.

    Article  CAS  PubMed  Google Scholar 

  • Møller N, Jørgensen JO. Effects of growth hormone on glucose, lipid, and protein metabolism in human subjects. Endocr Rev. 2009;30(2):152–77.

    Article  PubMed  Google Scholar 

  • Moran LJ, Misso ML, Wild RA, Norman RJ. Impaired glucose tolerance, type 2 diabetes and metabolic syndrome in polycystic ovary syndrome: a systematic review and meta-analysis. Hum Reprod Update. 2010;16(4):347–63.

    Article  CAS  PubMed  Google Scholar 

  • Müller MJ, von Schütz B, Huhnt HJ, Zick R, Mitzkat HJ, von zur Mühlen A. Glucoregulatory function of thyroid hormones: interaction with insulin depends on the prevailing glucose concentration. J Clin Endocrinol Metab. 1986;63(1):62–71.

    Article  PubMed  Google Scholar 

  • Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potenza M, Via MA, Yanagisawa RT. Excess thyroid hormones and glucose metabolism. Endocr Pract. 2009;15(3):254–62.

    Article  PubMed  Google Scholar 

  • Procopio M, Magro G, Cesario F, Piovesan A, Pia A, Molineri N, et al. The oral glucose tolerance test reveals a high frequency of both impaired glucose tolerance and undiagnosed type 2 diabetes mellitus in primary hyperparathyroidism. Diabet Med. 2002;19(11):958–61.

    Article  CAS  PubMed  Google Scholar 

  • Remde H, Hanslik G, Rayes N, Quinkler M. Glucose metabolism in primary aldosteronism. Horm Metab Res. 2015;47(13):987–93.

    Article  CAS  PubMed  Google Scholar 

  • Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum Reprod. 2004;19(1):41–7.

    Google Scholar 

  • Salzano A, Arcopinto M, Marra AM, Bobbio E, Esposito D, Accardo G, et al. Klinefelter syndrome, cardiovascular system, and thromboembolic disease: review of literature and clinical perspectives. Eur J Endocrinol. 2016;175(1):R27–40.

    CAS  PubMed  Google Scholar 

  • Sam S, Coviello AD, Sung YA, Legro RS, Dunaif A. Metabolic phenotype in the brothers of women with polycystic ovary syndrome. Diabetes Care. 2008;31(6):1237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvaraj J, Sathish S, Mayilvanan C, Balasubramanian K. Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat. Mol Cell Biochem. 2013;372(1–2):113–26.

    Article  CAS  PubMed  Google Scholar 

  • Silverstein JM. Hyperglycemia induced by pasireotide in patients with Cushing’s disease or acromegaly. Pituitary. 2016;19(5):536–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor WH, Khaleeli AA. Coincident diabetes mellitus and primary hyperparathyroidism. Diabetes Metab Res Rev. 2001;17(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  • Terzolo M, Pia A, Reimondo G. Subclinical Cushing’s syndrome: definition and management. Clin Endocrinol. 2012;76(1):12–8.

    Article  CAS  Google Scholar 

  • Tosi F, Di Sarra D, Kaufman JM, Bonin C, Moretta R, Bonora E, et al. Total body fat and central fat mass independently predict insulin resistance but not hyperandrogenemia in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2015;100(2):661–9.

    Article  CAS  PubMed  Google Scholar 

  • van Beek AP, de Haas ER, van Vloten WA, Lips CJ, Roijers JF, Canninga-van Dijk MR. The glucagonoma syndrome and necrolytic migratory erythema: a clinical review. Eur J Endocrinol. 2004;151(5):531–7.

    Article  PubMed  Google Scholar 

  • Werbel SS, Ober KP. Pheochromocytoma. Update on diagnosis, localization, and management. Med Clin N Am. 1995;79(1):131–53.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Divall S, Nwaopara A, Radovick S, Wondisford F, Ko C, et al. Obesity-induced infertility and hyperandrogenism are corrected by deletion of the insulin receptor in the ovarian theca cell. Diabetes. 2014;63(4):1270–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • .

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Moghetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Moghetti, P. (2018). Diabetes Secondary to Endocrine Disorders and PCOS. In: Bonora, E., DeFronzo, R. (eds) Diabetes Complications, Comorbidities and Related Disorders. Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-27316-7_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27316-7_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27316-7

  • Online ISBN: 978-3-319-27316-7

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Diabetes Secondary to Endocrine Disorders and PCOS
    Published:
    02 August 2019

    DOI: https://doi.org/10.1007/978-3-319-27316-7_20-2

  2. Original

    Diabetes Secondary to Endocrine Disorders and PCOS
    Published:
    08 March 2018

    DOI: https://doi.org/10.1007/978-3-319-27316-7_20-1