Skip to main content

Acid–Base Balance in the Poisoned Patient

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Critical Care Toxicology
  • 602 Accesses

Abstract

Acid-base disorders are a major source of morbidity and mortality among patients in the intensive care unit (ICU). An observational cohort study of 9,799 ICU patients found that nearly two thirds of critically ill patients suffered from acute Metabolic Acidosis. Mortality among those with metabolic acidosis was 45 %, compared with 25 % for those without it. For those with lactic acidosis, the mortality rate was 56 % [1]. It is difficult to directly extrapolate these findings to poisoned patients who generally have a significantly lower mortality rate than the average ICU patient. We do know, however, from studies of poisonings with specific substances, such as metformin, ethylene glycol, and methanol, that the presence of severe metabolic acidosis is associated with a relatively poor prognosis [2]. A review of 22 cases of metformin overdose revealed a median pH nadir of 7.30 and median plasma lactate of 10.8 mmol/L among survivors compared with pH 6.71 and median plasma lactate of 35.0 mmol/L among non-survivors [2]. Among 18 ethylene glycol poisoned patients, non-survivors had a mean admission pH of 7.05, compared with 7.31 in survivors [3]. No patient with a pH less than 7.10 survived. Not surprisingly, most of the non-survivors presented to the hospital late after ingestion (from 6 h to > 24 h). In a review of one-time methanol exposures with known time of ingestion, 22 patients presented for care <6 h after ingestion and had an early methanol level. Sixteen of these were acidotic on arrival [4]. Blood methanol concentrations ranged from 10 to 570 mg/dL (3–178 mmol/L), and initial arterial pH ranged from 6.90 to 7.42. All underwent treatment with alcohol dehydrogenase inhibitors (with or without hemodialysis). One patient with pH 6.99 died. Three patients with pH ranging from 7.26 to 7.32 suffered optic neuropathies but survived. One patient with pH 6.90 was described as “alive” on discharge, with the remaining 11 (pH range 7.09–7.42) noted as having a full recovery. In summary, it appears that severe metabolic acidosis is associated with a poor prognosis in representative poisonings and that time of presentation plays a significant role in outcome. A larger study of the prognostic value of acid–base disturbances in poisoning in general among ICU patients would be edifying.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gunnerson KJ, Saul M, He S, Kellum JA. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care. 2006;10(1):R22.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dell’Aglio DM, Perino LJ, Kazzi Z, Abramson J, Schwartz MD, Morgan BW. Acute metformin overdose: examining serum pH, lactate level, and metformin concentrations in survivors versus nonsurvivors: a systematic review of the literature. Ann Emerg Med. 2009;54(6):818–23.

    Article  PubMed  Google Scholar 

  3. Tanasescu A, Macovei RA, Tudosie MS. Outcome of patients in acute poisoning with ethylene glycol – factors which may have influence on evolution. J Med Life. 2014;7(Spec No. 3):81–6.

    PubMed  PubMed Central  Google Scholar 

  4. Kostic MA, Dart RC. Rethinking the toxic methanol level. J Toxicol Clin Toxicol. 2003;41(6):793–800.

    Article  CAS  PubMed  Google Scholar 

  5. Rastegar A. Clinical utility of Stewart’s method in diagnosis and management of acid–base disorders. Clin J Am Soc Nephrol. 2009;4(7):1267–74.

    Article  CAS  PubMed  Google Scholar 

  6. Al-Jaghbeer M, Kellum JA. Acid–base disturbances in intensive care patients: etiology, pathophysiology and treatment. Nephrol Dial Transplant. 2014;30(7):1104–11.

    Google Scholar 

  7. O’Malley GF. Emergency department management of the salicylate-poisoned patient. Emerg Med Clin North Am. 2007;25(2):333–46. abstract viii.

    Article  PubMed  Google Scholar 

  8. Fernandez R, Larrain C, Zapata P. Acute ventilatory and circulatory reactions evoked by nicotine: are they excitatory or depressant? Respir Physiol Neurobiol. 2002;133(3):173–82.

    Article  CAS  PubMed  Google Scholar 

  9. Karapetian GK, Engels HJ, Gretebeck KA, Gretebeck RJ. Effect of caffeine on LT, VT and HRVT. Int J Sports Med. 2012;33(7):507–13.

    Article  CAS  PubMed  Google Scholar 

  10. Kolarzyk E, Targosz D, Pach D, Misiolek L. Nervous regulation of breathing in opiate dependent patient. Part I. Respiratory system efficiency and breathing regulation in the first stage of controlled abstinence. Przegl Lek. 2000;57(10):531–5.

    CAS  PubMed  Google Scholar 

  11. Campbell C, Weinger MB, Quinn M. Alterations in diaphragm EMG activity during opiate-induced respiratory depression. Respir Physiol. 1995;100(2):107–17.

    Article  CAS  PubMed  Google Scholar 

  12. Gueye PN, Lofaso F, Borron SW, Mellerio F, Vicaut E, Harf A, et al. Mechanism of respiratory insufficiency in pure or mixed drug-induced coma involving benzodiazepines. J Toxicol Clin Toxicol. 2002;40(1):35–47.

    Article  CAS  PubMed  Google Scholar 

  13. Patel AM, Adeseun GA, Goldfarb S. Calcium-alkali syndrome in the modern era. Nutrients. 2013;5(12):4880–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel AM, Goldfarb S. Got calcium? Welcome to the calcium-alkali syndrome. J Am Soc Nephrol. 2010;21(9):1440–3.

    Article  CAS  PubMed  Google Scholar 

  15. Wu KD, Chuang RB, Wu FL, Hsu WA, Jan IS, Tsai KS. The milk-alkali syndrome caused by betelnuts in oyster shell paste. J Toxicol Clin Toxicol. 1996;34(6):741–5.

    Article  CAS  PubMed  Google Scholar 

  16. Muller-Lissner SA. Adverse effects of laxatives: fact and fiction. Pharmacology. 1993;47 Suppl 1:138–45.

    Article  PubMed  Google Scholar 

  17. Tatsumi H, Masuda Y, Imaizumi H, Kuroda H, Yoshida S, Kyan R, et al. A case of cardiopulmonary arrest caused by laxatives-induced hypermagnesemia in a patient with anorexia nervosa and chronic renal failure. J Anesth. 2011;25(6):935–8.

    Article  PubMed  Google Scholar 

  18. Chiang WF, Yan MT, Wu TJ, Lin SH. A hypokalaemic woman with nephrocalcinosis: rebirth of old knowledge. Ann Clin Biochem. 2013;50(Pt 2):176–9.

    Article  PubMed  Google Scholar 

  19. Miller JL, Schaefer J, Tam M, Harrison DL, Johnson PN. Ethacrynic Acid continuous infusions in critically ill pediatric patients. J Pediatr Pharmacol Ther. 2014;19(1):49–55.

    PubMed  PubMed Central  Google Scholar 

  20. Isaia GC, Pellissetto C, Ravazzoli M, Tamone C. Acute adrenal crisis and hypercalcemia in a patient assuming high liquorice doses. Minerva Med. 2008;99(1):91–4.

    CAS  PubMed  Google Scholar 

  21. Onishi A, Muto S, Homma S, Inaba T, Shuto R, Kusano E, et al. Pseudoaldosteronism with increased serum cortisol associated with pneumonia, hypouricemia, hypocalcemia, and hypophosphatemia. Clin Nephrol. 2010;74(5):403–8.

    CAS  PubMed  Google Scholar 

  22. Chrispal A, Boorugu H, Prabhakar AT, Moses V. Amikacin-induced type 5 Bartter-like syndrome with severe hypocalcemia. J Postgrad Med. 2009;55(3):208–10.

    Article  CAS  PubMed  Google Scholar 

  23. Arroyo M, Fenves AZ, Emmett M. The calcium-alkali syndrome. Proc (Baylor Univ Med Cent). 2013;26(2):179–81.

    Google Scholar 

  24. Olveira Fuster G, Mancha Doblas I, Vazquez San Miguel F, de Antonio EI, CSE F. Surreptitious intake of diuretics as the cause of pseudo-Bartter’s syndrome: apropos of a case and differential diagnosis. An Med Interna. 1996;13(10):496–9.

    CAS  PubMed  Google Scholar 

  25. Ricci Z, Haiberger R, Pezzella C, Garisto C, Favia I, Cogo P. Furosemide versus ethacrynic acid in pediatric patients undergoing cardiac surgery: a randomized controlled trial. Crit Care. 2015;19(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lenzenhuber E, Muller C, Rommelspacher H, Spies C. Gamma-hydroxybutyrate for treatment of alcohol withdrawal syndrome in intensive care patients. A comparison between with two symptom-oriented therapeutic concepts. Anaesthesist. 1999;48(2):89–96.

    Article  CAS  PubMed  Google Scholar 

  27. Chou CL, Chen YH, Chau T, Lin SH. Acquired bartter-like syndrome associated with gentamicin administration. Am J Med Sci. 2005;329(3):144–9.

    Article  PubMed  Google Scholar 

  28. Shetty AK, Rogers NL, Mannick EE, Aviles DH. Syndrome of hypokalemic metabolic alkalosis and hypomagnesemia associated with gentamicin therapy: case reports. Clin Pediatr (Phila). 2000;39(9):529–33.

    Article  CAS  Google Scholar 

  29. Centers for Disease Control, Prevention. Infant metabolic alkalosis and soy-based formula – United States. 1979. MMWR Morb Mortal Wkly Rep. 1996;45(45):985–8.

    Google Scholar 

  30. Herrmann U, Schwille PO, Schwarzlaender H, Berger I, Hoffmann G. Citrate and recurrent idiopathic calcium urolithiasis. A longitudinal pilot study on the metabolic effects of oral potassium sodium citrate administered as short-, medium- and long-term to male stone patients. Urol Res. 1992;20(5):347–53.

    Article  CAS  PubMed  Google Scholar 

  31. Smith GI, Jeukendrup AE, Ball D. Sodium acetate induces a metabolic alkalosis but not the increase in fatty acid oxidation observed following bicarbonate ingestion in humans. J Nutr. 2007;137(7):1750–6.

    CAS  PubMed  Google Scholar 

  32. Adeva-Andany MM, Fernandez-Fernandez C, Mourino-Bayolo D, Castro-Quintela E, Dominguez-Montero A. Sodium bicarbonate therapy in patients with metabolic acidosis. Scientific World Journal. 2014;2014:627673.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ichai C, Orban JC, Fontaine E. Sodium lactate for fluid resuscitation: the preferred solution for the coming decades? Crit Care. 2014;18(4):163.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Geara AS, Parikh A, Rekhtman Y, Rao MK. The case mid R: metabolic alkalosis in a patient with cystic fibrosis. Kidney Int. 2012;81(4):421–2.

    Article  PubMed  Google Scholar 

  35. Gee P, Richardson S, Woltersdorf W, Moore G. Toxic effects of BZP-based herbal party pills in humans: a prospective study in Christchurch, New Zealand. N Z Med J. 2005;118(1227):U1784.

    PubMed  Google Scholar 

  36. Balikova M. Nonfatal and fatal DOB (2,5-dimethoxy-4-bromoamphetamine) overdose. Forensic Sci Int. 2005;153(1):85–91.

    Article  CAS  PubMed  Google Scholar 

  37. Ben-Abraham R, Szold O, Rudick V, Weinbroum AA. “Ecstasy” intoxication: life-threatening manifestations and resuscitative measures in the intensive care setting. Eur J Emerg Med. 2003;10(4):309–13.

    Article  PubMed  Google Scholar 

  38. Greene SL, Dargan PI, O’Connor N, Jones AL, Kerins M. Multiple toxicity from 3,4-methylenedioxymethamphetamine (“ecstasy”). Am J Emerg Med. 2003;21(2):121–4.

    Article  PubMed  Google Scholar 

  39. Liss DB, Paden MS, Schwarz ES, Mullins ME. What is the clinical significance of 5-oxoproline (pyroglutamic acid) in high anion gap metabolic acidosis following paracetamol (acetaminophen) exposure? Clin Toxicol (Phila). 2013;51(9):817–27.

    Article  CAS  Google Scholar 

  40. Kassamali R, Sica DA. Acetazolamide: a forgotten diuretic agent. Cardiol Rev. 2011;19(6):276–8.

    Article  PubMed  Google Scholar 

  41. Muraki K, Inoue Y, Ohta I, Kondo K, Matayoshi Y, Kamei T. Massive rhabdomyolysis and acute renal failure after acetonitrile exposure. Intern Med. 2001;40(9):936–9.

    Article  CAS  PubMed  Google Scholar 

  42. Foley RJ. Inhaled industrial acetylene. A diabetic ketoacidosis mimic. JAMA. 1985;254(8):1066–7.

    Article  CAS  PubMed  Google Scholar 

  43. Budris WA, Roxe DM, Duvel JM. High anion gap metabolic acidosis associated with aminocaproic acid. Ann Pharmacother. 1999;33(3):308–11.

    Article  CAS  PubMed  Google Scholar 

  44. Lan KC, Lin YF, Yu FC, Lin CS, Chu P. Clinical manifestations and prognostic features of acute methamphetamine intoxication. J Formos Med Assoc. 1998;97(8):528–33.

    CAS  PubMed  Google Scholar 

  45. Gerard JM, Luisiri A. A fatal overdose of arginine hydrochloride. J Toxicol Clin Toxicol. 1997;35(6):621–5.

    Article  CAS  PubMed  Google Scholar 

  46. Chang S, Lamm SH. Human health effects of sodium azide exposure: a literature review and analysis. Int J Toxicol. 2003;22(3):175–86.

    Article  CAS  PubMed  Google Scholar 

  47. Schwarz ES, Wax PM, Kleinschmidt KC, Sharma K, Chung WM, Cantu G, et al. Multiple poisonings with sodium azide at a local restaurant. J Emerg Med. 2014;46(4):491–4.

    Article  PubMed  Google Scholar 

  48. Corradi F, Brusasco C, Palermo S, Belvederi G. A case report of massive acute boric acid poisoning. Eur J Emerg Med. 2010;17(1):48–51.

    Article  PubMed  Google Scholar 

  49. Benaissa ML, Megarbane B, Borron SW, Baud FJ. Is elevated plasma lactate a useful marker in the evaluation of pure carbon monoxide poisoning? Intensive Care Med. 2003;29(8):1372–5.

    Article  PubMed  Google Scholar 

  50. Kao LW, Nanagas KA. Carbon monoxide poisoning. Med Clin North Am. 2005;89(6):1161–94.

    Article  CAS  PubMed  Google Scholar 

  51. Moon JM, Shin MH, Chun BJ. The value of initial lactate in patients with carbon monoxide intoxication: in the emergency department. Hum Exp Toxicol. 2011;30(8):836–43.

    Article  CAS  PubMed  Google Scholar 

  52. Sokal JA, Kralkowska E. The relationship between exposure duration, carboxyhemoglobin, blood glucose, pyruvate and lactate and the severity of intoxication in 39 cases of acute carbon monoxide poisoning in man. Arch Toxicol. 1985;57(3):196–9.

    Article  CAS  PubMed  Google Scholar 

  53. Paillet-Loilier M, Cesbron A, Le Boisselier R, Bourgine J, Debruyne D. Emerging drugs of abuse: current perspectives on substituted cathinones. Subst Abuse Rehabil. 2014;5:37–52.

    PubMed  PubMed Central  Google Scholar 

  54. Szerlip HM, Singer I. Hyperchloremic metabolic acidosis after chlorine inhalation. Am J Med. 1984;77(3):581–2.

    Article  CAS  PubMed  Google Scholar 

  55. Bin Salih S, Al Qahtani M, Al Anazi T, Al Hussein M, Al Hayyan H, Al Modaimegh H. Metabolic acidosis and generalized seizures secondary to citalopram overdose: a case report. J Clin Pharm Ther. 2010;35(4):479–82.

    CAS  PubMed  Google Scholar 

  56. Hoffman RS. Treatment of patients with cocaine-induced arrhythmias: bringing the bench to the bedside. Br J Clin Pharmacol. 2010;69(5):448–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Allam S, Noble JS. Cocaine-excited delirium and severe acidosis. Anaesthesia. 2001;56(4):385–6.

    Article  CAS  PubMed  Google Scholar 

  58. Baud FJ, Barriot P, Toffis V, Riou B, Vicaut E, Lecarpentier Y, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med. 1991;325(25):1761–6.

    Article  CAS  PubMed  Google Scholar 

  59. Bismuth C, Baud F, Borron S, Scherrmann J. Antibodies proposed as therapeutic agents. Arch Toxicol Suppl. 1996;18:321–32.

    Article  CAS  PubMed  Google Scholar 

  60. Baud FJ, Borron SW, Megarbane B, Trout H, Lapostolle F, Vicaut E, et al. Value of lactic acidosis in the assessment of the severity of acute cyanide poisoning. Crit Care Med. 2002;30(9):2044–50.

    Article  CAS  PubMed  Google Scholar 

  61. Borron SW, Baud FJ. Antidotes for acute cyanide poisoning. Curr Pharm Biotechnol. 2012;13(10):1940–8.

    Article  CAS  PubMed  Google Scholar 

  62. Huntington S, Heppner J, Vohra R, Mallios R, Geller RJ. Serious adverse effects from single-use detergent sacs: report from a U.S. statewide poison control system. Clin Toxicol (Phila). 2014;52(3):220–5.

    Article  CAS  Google Scholar 

  63. Beuhler MC, Gala PK, Wolfe HA, Meaney PA, Henretig FM. Laundry detergent “pod” ingestions: a case series and discussion of recent literature. Pediatr Emerg Care. 2013;29(6):743–7.

    Article  PubMed  Google Scholar 

  64. Wilson KC, Reardon C, Farber HW. Propylene glycol toxicity in a patient receiving intravenous diazepam. N Engl J Med. 2000;343(11):815.

    Article  CAS  PubMed  Google Scholar 

  65. Moon JM, Chun BJ. Clinical characteristics of patients after dicamba herbicide ingestion. Clin Toxicol (Phila). 2014;52(1):48–53.

    Article  CAS  Google Scholar 

  66. Dragovic G, Jevtovic D. The role of nucleoside reverse transcriptase inhibitors usage in the incidence of hyperlactatemia and lactic acidosis in HIV/AIDS patients. Biomed Pharmacother. 2012;66(4):308–11.

    Article  CAS  PubMed  Google Scholar 

  67. Dlamini J, Ledwaba L, Mokwena N, Mokhathi T, Orsega S, Tsoku M, et al. Lactic acidosis and symptomatic hyperlactataemia in a randomized trial of first-line therapy in HIV-infected adults in South Africa. Antivir Ther. 2011;16(4):605–9.

    Article  PubMed  Google Scholar 

  68. Borron SW, Baud FJ, Garnier R. Intravenous 4-methylpyrazole as an antidote for diethylene glycol and triethylene glycol poisoning: a case report. Vet Hum Toxicol. 1997;39(1):26–8.

    CAS  PubMed  Google Scholar 

  69. Vassiliadis J, Graudins A, Dowsett RP. Triethylene glycol poisoning treated with intravenous ethanol infusion. J Toxicol Clin Toxicol. 1999;37(6):773–6.

    Article  CAS  PubMed  Google Scholar 

  70. Brent J. Fomepizole for the treatment of pediatric ethylene and diethylene glycol, butoxyethanol, and methanol poisonings. Clin Toxicol (Phila). 2010;48(5):401–6.

    Article  CAS  Google Scholar 

  71. Kraut JA, Xing SX. Approach to the evaluation of a patient with an increased serum osmolal gap and high-anion-gap metabolic acidosis. Am J Kidney Dis. 2011;58(3):480–4.

    Article  PubMed  Google Scholar 

  72. Moses V, Peter JV. Acute intentional toxicity: endosulfan and other organochlorines. Clin Toxicol (Phila). 2010;48(6):539–44.

    Article  CAS  Google Scholar 

  73. Sharma RK, Kaul A, Gupta A, Bhadauria D, Prasad N, Jain A, et al. High anion gap refractory metabolic acidosis as a critical presentation of endosulfan poisoning. Indian J Pharmacol. 2011;43(4):469–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Allison MG, McCurdy MT. Alcoholic metabolic emergencies. Emerg Med Clin North Am. 2014;32(2):293–301.

    Article  PubMed  Google Scholar 

  75. Brent J. Fomepizole for ethylene glycol and methanol poisoning. N Engl J Med. 2009;360(21):2216–23.

    Article  CAS  PubMed  Google Scholar 

  76. Ghannoum M, Hoffman RS, Mowry JB, Lavergne V. Trends in toxic alcohol exposures in the United States from 2000 to 2013: a focus on the use of antidotes and extracorporeal treatments. Semin Dial. 2014;27(4):395–401.

    Article  PubMed  Google Scholar 

  77. Gualtieri JF, DeBoer L, Harris CR, Corley R. Repeated ingestion of 2-butoxyethanol: case report and literature review. J Toxicol Clin Toxicol. 2003;41(1):57–62.

    Article  CAS  PubMed  Google Scholar 

  78. Hung T, Dewitt CR, Martz W, Schreiber W, Holmes DT. Fomepizole fails to prevent progression of acidosis in 2-butoxyethanol and ethanol coingestion. Clin Toxicol (Phila). 2010;48(6):569–71.

    Article  CAS  Google Scholar 

  79. Osterhoudt KC. Fomepizole therapy for pediatric butoxyethanol intoxication. J Toxicol Clin Toxicol. 2002;40(7):929–30.

    Article  PubMed  Google Scholar 

  80. Nitter-Hauge S. Poisoning with ethylene glycol monomethyl ether. Report of two cases. Acta Med Scand. 1970;188(4):277–80.

    CAS  PubMed  Google Scholar 

  81. Bedichek E, Kirschbaum B. A case of propylene glycol toxic reaction associated with etomidate infusion. Arch Intern Med. 1991;151(11):2297–8.

    Article  CAS  PubMed  Google Scholar 

  82. Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20(4):290–3.

    Article  CAS  PubMed  Google Scholar 

  83. McConnel JR, Ong CS, McAllister JL, Gross TG. Propylene glycol toxicity following continuous etomidate infusion for the control of refractory cerebral edema. Neurosurgery. 1996;38(1):232–3.

    Article  CAS  PubMed  Google Scholar 

  84. Van de Wiele B, Rubinstein E, Peacock W, Martin N. Propylene glycol toxicity caused by prolonged infusion of etomidate. J Neurosurg Anesthesiol. 1995;7(4):259–62.

    Article  PubMed  Google Scholar 

  85. Moyle G. Toxicity of antiretroviral nucleoside and nucleotide analogues: is mitochondrial toxicity the only mechanism? Drug Saf. 2000;23(6):467–81.

    Article  CAS  PubMed  Google Scholar 

  86. Honkoop P, Scholte HR, de Man RA, Schalm SW. Mitochondrial injury. Lessons from the fialuridine trial. Drug Saf. 1997;17(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  87. Arnaudo JP, Maheut H, Martin B, Hesse JY. Reversible ketoacidosis and hyperglycemia after absorption of flumequine. Effect of high doses in a non-diabetic adult. Nouv Presse Med. 1980;9(9):636.

    CAS  PubMed  Google Scholar 

  88. Pandey CK, Agarwal A, Baronia A, Singh N. Toxicity of ingested formalin and its management. Hum Exp Toxicol. 2000;19(6):360–6.

    Article  CAS  PubMed  Google Scholar 

  89. Dalus D, Mathew AJ, Pillai SS. Formic acid poisoning in a tertiary care center in South India: a 2-year retrospective analysis of clinical profile and predictors of mortality. J Emerg Med. 2013;44(2):373–80.

    Article  PubMed  Google Scholar 

  90. Yang CC, Ger J, Li CF. Formic acid: a rare but deadly source of carbon monoxide poisoning. Clin Toxicol (Phila). 2008;46(4):287–9.

    Article  CAS  Google Scholar 

  91. Kamijo Y, Takai M, Fujita Y, Hirose Y, Iwasaki Y, Ishihara S. A multicenter retrospective survey on a suicide trend using hydrogen sulfide in Japan. Clin Toxicol (Phila). 2013;51(5):425–8.

    Article  CAS  Google Scholar 

  92. Asif MJ, Exline MC. Utilization of hyperbaric oxygen therapy and induced hypothermia after hydrogen sulfide exposure. Respir Care. 2012;57(2):307–10.

    Article  PubMed  Google Scholar 

  93. Madiwale T, Liebelt E. Iron: not a benign therapeutic drug. Curr Opin Pediatr. 2006;18(2):174–9.

    Article  PubMed  Google Scholar 

  94. Chang TP, Rangan C. Iron poisoning: a literature-based review of epidemiology, diagnosis, and management. Pediatr Emerg Care. 2011;27(10):978–85.

    Article  PubMed  Google Scholar 

  95. Osterhoudt KC, Henretig FM. A 16-year-old with recalcitrant seizures. Pediatr Emerg Care. 2012;28(3):304–6.

    Article  PubMed  Google Scholar 

  96. Minns AB, Ghafouri N, Clark RF. Isoniazid-induced status epilepticus in a pediatric patient after inadequate pyridoxine therapy. Pediatr Emerg Care. 2010;26(5):380–1.

    Article  PubMed  Google Scholar 

  97. Riker RR, Fraser GL. Adverse events associated with sedatives, analgesics, and other drugs that provide patient comfort in the intensive care unit. Pharmacotherapy. 2005;25(5 Pt 2):8S–18.

    Article  CAS  PubMed  Google Scholar 

  98. Zosel A, Egelhoff E, Heard K. Severe lactic acidosis after an iatrogenic propylene glycol overdose. Pharmacotherapy. 2010;30(2):219.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Pillai U, Hothi JC, Bhat ZY. Severe propylene glycol toxicity secondary to use of anti-epileptics. Am J Ther. 2014;21(4):e106–9.

    PubMed  Google Scholar 

  100. Adebamiro A, Perazella MA. Recurrent acute kidney injury following bath salts intoxication. Am J Kidney Dis. 2012;59(2):273–5.

    Article  PubMed  Google Scholar 

  101. Chan P, Chen JH, Lee MH, Deng JF. Fatal and nonfatal methamphetamine intoxication in the intensive care unit. J Toxicol Clin Toxicol. 1994;32(2):147–55.

    Article  CAS  PubMed  Google Scholar 

  102. Roberts DM, Yates C, Megarbane B, Winchester JF, Maclaren R, Gosselin S, et al. Recommendations for the role of extracorporeal treatments in the management of acute methanol poisoning: a systematic review and consensus statement. Crit Care Med. 2015;43(2):461–72.

    Article  CAS  PubMed  Google Scholar 

  103. Pearson JM, Hargraves TL, Hair LS, Massucci CJ, Frazee 3rd CC, Garg U, et al. Three fatal intoxications due to methylone. J Anal Toxicol. 2012;36(6):444–51.

    Article  CAS  PubMed  Google Scholar 

  104. Eizadi-Mood N. Nalidixic acid overdose and metabolic acidosis. CJEM. 2006;8(2):78.

    Article  PubMed  Google Scholar 

  105. Dhongade RK, Kavade SG, Damle RS. Neem oil poisoning. Indian Pediatr. 2008;45(1):56–7.

    PubMed  Google Scholar 

  106. Meeran M, Murali A, Balakrishnan R, Narasimhan D. “Herbal remedy is natural and safe” – truth or myth? J Assoc Physicians India. 2013;61(11):848–50.

    PubMed  Google Scholar 

  107. Hottinger DG, Beebe DS, Kozhimannil T, Prielipp RC, Belani KG. Sodium nitroprusside in 2014: a clinical concepts review. J Anaesthesiol Clin Pharmacol. 2014;30(4):462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lipper B, Bell A, Gaynor B. Recurrent hypotension immediately after seizures in nortriptyline overdose. Am J Emerg Med. 1994;12(4):452–3.

    Article  CAS  PubMed  Google Scholar 

  109. Ballesteros S, Martinez MA, Ballesteros MA, de la Torre CS, Rodriguez-Borregan JC. A severe case of olanzapine overdose with analytical data. Clin Toxicol (Phila). 2007;45(4):412–5.

    Article  CAS  Google Scholar 

  110. Zadik Z, Blachar Y, Barak Y, Levin S. Organophosphate poisoning presenting as diabetic ketoacidosis. J Toxicol Clin Toxicol. 1983;20(4):381–5.

    Article  CAS  PubMed  Google Scholar 

  111. Haddad LM, Dimond KA, Schweistris JE. Phenol poisoning. JACEP. 1979;8(7):267–9.

    Article  CAS  PubMed  Google Scholar 

  112. Todorovic V. Acute phenol poisoning. Med Pregl. 2003;56 Suppl 1:37–41.

    PubMed  Google Scholar 

  113. Hainer V, Aldhoon-Hainerova I. Tolerability and safety of the new anti-obesity medications. Drug Saf. 2014;37(9):693–702.

    Article  CAS  PubMed  Google Scholar 

  114. Caravati EM. Metabolic abnormalities associated with phosphoric acid ingestion. Ann Emerg Med. 1987;16(8):904–6.

    Article  CAS  PubMed  Google Scholar 

  115. Fernandez OU, Canizares LL. Acute hepatotoxicity from ingestion of yellow phosphorus-containing fireworks. J Clin Gastroenterol. 1995;21(2):139–42.

    Article  CAS  PubMed  Google Scholar 

  116. Woolf AD, Ebert TH. Toxicity after self-poisoning by ingestion of potassium chloroplatinite. J Toxicol Clin Toxicol. 1991;29(4):467–72.

    Article  CAS  PubMed  Google Scholar 

  117. Bismuth C, Baud FJ, Djeghout H, Astier A, Aubriot D. Cyanide poisoning from propionitrile exposure. J Emerg Med. 1987;5(3):191–5.

    Article  CAS  PubMed  Google Scholar 

  118. Scolnick B, Hamel D, Woolf AD. Successful treatment of life-threatening propionitrile exposure with sodium nitrite/sodium thiosulfate followed by hyperbaric oxygen. J Occup Med. 1993;35(6):577–80.

    Article  CAS  PubMed  Google Scholar 

  119. Mirrakhimov AE, Voore P, Halytskyy O, Khan M, Ali AM. Propofol infusion syndrome in adults: a clinical update. Crit Care Res Pract. 2015;2015:260385.

    PubMed  PubMed Central  Google Scholar 

  120. Lawson-Smith P, Jansen EC, Hyldegaard O. Cyanide intoxication as part of smoke inhalation – a review on diagnosis and treatment from the emergency perspective. Scand J Trauma Resusc Emerg Med. 2011;19:14.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Orbegozo Cortes D, Rayo Bonor A, Vincent JL. Isotonic crystalloid solutions: a structured review of the literature. Br J Anaesth. 2014;112(6):968–81.

    Article  CAS  PubMed  Google Scholar 

  122. Guidet B, Soni N, Della Rocca G, Kozek S, Vallet B, Annane D, et al. A balanced view of balanced solutions. Crit Care. 2010;14(5):325.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Morgan TJ. The ideal crystalloid – what is “balanced”? Curr Opin Crit Care. 2013;19(4):299–307.

    Article  PubMed  Google Scholar 

  124. Lactic Acidosis International Study Group. Risk factors for lactic acidosis and severe hyperlactataemia in HIV-1-infected adults exposed to antiretroviral therapy. AIDS. 2007;21(18):2455–64.

    Article  CAS  Google Scholar 

  125. McLeod HL, Baker Jr DK, Pui CH, Rodman JH. Somnolence, hypotension, and metabolic acidosis following high-dose teniposide treatment in children with leukemia. Cancer Chemother Pharmacol. 1991;29(2):150–4.

    Article  CAS  PubMed  Google Scholar 

  126. Charytan D, Jansen K. Severe metabolic complications from theophylline intoxication. Nephrology (Carlton). 2003;8(5):239–42.

    Article  Google Scholar 

  127. Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr Opin Clin Nutr Metab Care. 2011;14(6):610–7.

    Article  CAS  PubMed  Google Scholar 

  128. Tormoehlen LM, Tekulve KJ, Nanagas KA. Hydrocarbon toxicity: a review. Clin Toxicol (Phila). 2014;52(5):479–89.

    Article  CAS  Google Scholar 

  129. Dell’Orto VG, Belotti EA, Goeggel-Simonetti B, Simonetti GD, Ramelli GP, Bianchetti MG, et al. Metabolic disturbances and renal stone promotion on treatment with topiramate: a systematic review. Br J Clin Pharmacol. 2014;77(6):958–64.

    Article  PubMed  CAS  Google Scholar 

  130. Scheulen ME, Hilger RA, Oberhoff C, Casper J, Freund M, Josten KM, et al. Clinical phase I dose escalation and pharmacokinetic study of high-dose chemotherapy with treosulfan and autologous peripheral blood stem cell transplantation in patients with advanced malignancies. Clin Cancer Res. 2000;6(11):4209–16.

    CAS  PubMed  Google Scholar 

  131. Hemstreet BA. Antimicrobial-associated renal tubular acidosis. Ann Pharmacother. 2004;38(6):1031–8.

    Article  PubMed  Google Scholar 

  132. Nanau RM, Neuman MG. Adverse drug reactions induced by valproic acid. Clin Biochem. 2013;46(15):1323–38.

    Article  CAS  PubMed  Google Scholar 

  133. Watson ID, McBride D, Paterson KR. Fatal xylenol self-poisoning. Postgrad Med J. 1986;62(727):411–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tripuraneni NS, Smith PR, Weedon J, Rosa U, Sepkowitz D. Prognostic factors in lactic acidosis syndrome caused by nucleoside reverse transcriptase inhibitors: report of eight cases and review of the literature. AIDS Patient Care STDS. 2004;18(7):379–84.

    Article  PubMed  Google Scholar 

  135. Arenas-Pinto A, Grant AD, Edwards S, Weller IV. Lactic acidosis in HIV infected patients: a systematic review of published cases. Sex Transm Infect. 2003;79(4):340–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wilson BJ, Cowan HJ, Lord JA, Zuege DJ, Zygun DA. The accuracy of pulse oximetry in emergency department patients with severe sepsis and septic shock: a retrospective cohort study. BMC Emerg Med. 2010;10:9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Pretto JJ, Roebuck T, Beckert L, Hamilton G. Clinical use of pulse oximetry: official guidelines from the Thoracic Society of Australia and New Zealand. Respirology. 2014;19(1):38–46.

    Article  PubMed  Google Scholar 

  138. Weaver LK, Churchill SK, Deru K, Cooney D. False positive rate of carbon monoxide saturation by pulse oximetry of emergency department patients. Respir Care. 2013;58(2):232–40.

    PubMed  Google Scholar 

  139. Chang KC, Orr J, Hsu WC, Yu L, Tsou MY, Westenskow DR, et al. Accuracy of CO2 monitoring via nasal cannulas and oral bite blocks during sedation for esophagogastroduodenoscopy. J Clin Monit Comput. 2015.

    Google Scholar 

  140. Salem MM, Mujais SK. Gaps in the anion gap. Arch Intern Med. 1992;152(8):1625–9.

    Article  CAS  PubMed  Google Scholar 

  141. Wrenn K. The delta (delta) gap: an approach to mixed acid–base disorders. Ann Emerg Med. 1990;19(11):1310–3.

    Article  CAS  PubMed  Google Scholar 

  142. Adrogue HJ, Wilson H, Boyd 3rd AE, Suki WN, Eknoyan G. Plasma acid–base patterns in diabetic ketoacidosis. N Engl J Med. 1982;307(26):1603–10.

    Article  CAS  PubMed  Google Scholar 

  143. Brivet F, Bernardin M, Dormont J. Hyperchloremic acidosis in metabolic acidosis with anion gap excess. Comparison with diabetic ketoacidosis. Presse Med. 1991;20(9):413–7.

    CAS  PubMed  Google Scholar 

  144. Skellett S, Mayer A, Durward A, Tibby SM, Murdoch IA. Chasing the base deficit: hyperchloraemic acidosis following 0.9% saline fluid resuscitation. Arch Dis Child. 2000;83(6):514–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gabow PA, Kaehny WD, Fennessey PV, Goodman SI, Gross PA, Schrier RW. Diagnostic importance of an increased serum anion gap. N Engl J Med. 1980;303(15):854–8.

    Article  CAS  PubMed  Google Scholar 

  146. Winter SD, Pearson JR, Gabow PA, Schultz AL, Lepoff RB. The fall of the serum anion gap. Arch Intern Med. 1990;150(2):311–3.

    Article  CAS  PubMed  Google Scholar 

  147. Sadjadi SA. A new range for the anion gap. Ann Intern Med. 1995;123(10):807.

    Article  CAS  PubMed  Google Scholar 

  148. Sadjadi SA, Manalo R, Jaipaul N, McMillan J. Ion-selective electrode and anion gap range: what should the anion gap be? Int J Nephrol Renov Dis. 2013;6:101–5.

    Article  CAS  Google Scholar 

  149. Lolekha PH, Vanavanan S, Teerakarnjana N, Chaichanajarernkul U. Reference ranges of electrolyte and anion gap on the Beckman E4A, Beckman Synchron CX5, Nova CRT, and Nova Stat Profile Ultra. Clin Chim Acta. 2001;307(1–2):87–93.

    Article  CAS  PubMed  Google Scholar 

  150. Paulson WD, Roberts WL, Lurie AA, Koch DD, Butch AW, Aguanno JJ. Wide variation in serum anion gap measurements by chemistry analyzers. Am J Clin Pathol. 1998;110(6):735–42.

    Article  CAS  PubMed  Google Scholar 

  151. Kraut JA, Nagami GT. The serum anion gap in the evaluation of acid–base disorders: what are its limitations and can its effectiveness be improved? Clin J Am Soc Nephrol. 2013;8(11):2018–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jacob J, Lavonas EJ. Falsely normal anion gap in severe salicylate poisoning caused by laboratory interference. Ann Emerg Med. 2011;58(3):280–1.

    Article  PubMed  Google Scholar 

  153. Herres J, Ryan D, Salzman M. Delayed salicylate toxicity with undetectable initial levels after large-dose aspirin ingestion. Am J Emerg Med. 2009;27(9):1173 e1–3.

    Article  PubMed  Google Scholar 

  154. Figge J, Jabor A, Kazda A, Fencl V. Anion gap and hypoalbuminemia. Crit Care Med. 1998;26(11):1807–10.

    Article  CAS  PubMed  Google Scholar 

  155. Fencl V, Jabor A, Kazda A, Figge J. Diagnosis of metabolic acid–base disturbances in critically ill patients. Am J Respir Crit Care Med. 2000;162(6):2246–51.

    Article  CAS  PubMed  Google Scholar 

  156. Wang F, Butler T, Rabbani GH, Jones PK. The acidosis of cholera. Contributions of hyperproteinemia, lactic acidemia, and hyperphosphatemia to an increased serum anion gap. N Engl J Med. 1986;315(25):1591–5.

    Article  CAS  PubMed  Google Scholar 

  157. Decaux G, Schlesser M, Coffernils M, Prospert F, Namias B, Brimioulle S, et al. Uric acid, anion gap and urea concentration in the diagnostic approach to hyponatremia. Clin Nephrol. 1994;42(2):102–8.

    CAS  PubMed  Google Scholar 

  158. Decaux G, Musch W. Clinical laboratory evaluation of the syndrome of inappropriate secretion of antidiuretic hormone. Clin J Am Soc Nephrol. 2008;3(4):1175–84.

    Article  CAS  PubMed  Google Scholar 

  159. Dorwart WV, Chalmers L. Comparison of methods for calculating serum osmolality form chemical concentrations, and the prognostic value of such calculations. Clin Chem. 1975;21(2):190–4.

    CAS  PubMed  Google Scholar 

  160. Brindley PG, Butler MS, Cembrowski G, Brindley DN. Falsely elevated point-of-care lactate measurement after ingestion of ethylene glycol. CMAJ. 2007;176(8):1097–9.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Fijen JW, Kemperman H, Ververs FF, Meulenbelt J. False hyperlactatemia in ethylene glycol poisoning. Intensive Care Med. 2006;32(4):626–7.

    Article  PubMed  Google Scholar 

  162. Jorens PG. Falsely elevated lactate and ethylene glycol. Clin Toxicol (Phila). 2009;47(7):691.

    Article  Google Scholar 

  163. Manini AF, Hoffman RS, McMartin KE, Nelson LS. Relationship between serum glycolate and falsely elevated lactate in severe ethylene glycol poisoning. J Anal Toxicol. 2009;33(3):174–6.

    Article  CAS  PubMed  Google Scholar 

  164. Verelst S, Vermeersch P, Desmet K. Ethylene glycol poisoning presenting with a falsely elevated lactate level. Clin Toxicol (Phila). 2009;47(3):236–8.

    Article  CAS  Google Scholar 

  165. Megarbane B, Resiere D. Toxicological analysis is mandatory to interpret elevation in blood lactate concentration in toxic alcohol poisoning. Ann Fr Anesth Reanim. 2014;33(5):368–9.

    Article  CAS  PubMed  Google Scholar 

  166. Jorens PG, Demey HE, Schepens PJ, Coucke V, Verpooten GA, Couttenye MM, et al. Unusual D-lactic acid acidosis from propylene glycol metabolism in overdose. J Toxicol Clin Toxicol. 2004;42(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  167. Marraffa JM, Hui A, Stork CM. Severe hyperphosphatemia and hypocalcemia following the rectal administration of a phosphate-containing Fleet pediatric enema. Pediatr Emerg Care. 2004;20(7):453–6.

    Article  PubMed  Google Scholar 

  168. Hsu HJ, Wu MS. Extreme hyperphosphatemia and hypocalcemic coma associated with phosphate enema. Intern Med. 2008;47(7):643–6.

    Article  PubMed  Google Scholar 

  169. Wiener SW. Toxicologic acid–base disorders. Emerg Med Clin North Am. 2014;32(1):149–65.

    Article  PubMed  Google Scholar 

  170. Astrup P, Jorgensen K, Andersen OS, Engel K. The acid–base metabolism. A new approach. Lancet. 1960;1(7133):1035–9.

    Article  CAS  PubMed  Google Scholar 

  171. O’Leary TD, Langton SR. Calculated bicarbonate or total carbon dioxide? Clin Chem. 1989;35(8):1697–700.

    PubMed  Google Scholar 

  172. Rosan RC, Enlander D, Ellis J. Unpredictable error in calculated bicarbonate homeostasis during pediatric intensive care: the delusion of fixed pK’. Clin Chem. 1983;29(1):69–73.

    CAS  PubMed  Google Scholar 

  173. Kume T, Sisman AR, Solak A, Tuglu B, Cinkooglu B, Coker C. The effects of different syringe volume, needle size and sample volume on blood gas analysis in syringes washed with heparin. Biochem Med (Zagreb). 2012;22(2):189–201.

    Article  Google Scholar 

  174. Balasubramanyan N, Havens PL, Hoffman GM. Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med. 1999;27(8):1577–81.

    Article  CAS  PubMed  Google Scholar 

  175. Kellum JA. Metabolic acidosis in the critically ill: lessons from physical chemistry. Kidney Int Suppl. 1998;66:S81–6.

    CAS  PubMed  Google Scholar 

  176. Stewart PA. Modern quantitative acid–base chemistry. Can J Physiol Pharmacol. 1983;61(12):1444–61.

    Article  CAS  PubMed  Google Scholar 

  177. Fencl V, Leith DE. Stewart’s quantitative acid–base chemistry: applications in biology and medicine. Respir Physiol. 1993;91(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  178. Kellum JA, Kramer DJ, Pinsky MR. Strong ion gap: a methodology for exploring unexplained anions. J Crit Care. 1995;10(2):51–5.

    Article  CAS  PubMed  Google Scholar 

  179. Anstey CM. An assessment of the population variance of the strong ion gap using Monte Carlo simulation. Anaesth Intensive Care. 2009;37(6):983–91.

    CAS  PubMed  Google Scholar 

  180. Gunnerson KJ, Srisawat N, Kellum JA. Is there a difference between strong ion gap in healthy volunteers and intensive care unit patients? J Crit Care. 2010;25(3):520–4.

    Article  CAS  PubMed  Google Scholar 

  181. Durward A, Tibby SM, Skellett S, Austin C, Anderson D, Murdoch IA. The strong ion gap predicts mortality in children following cardiopulmonary bypass surgery. Pediatr Crit Care Med. 2005;6(3):281–5.

    Article  PubMed  Google Scholar 

  182. Moviat M, van den Boogaard M, Intven F, van der Voort P, van der Hoeven H, Pickkers P. Stewart analysis of apparently normal acid–base state in the critically ill. J Crit Care. 2013;28(6):1048–54.

    Article  PubMed  Google Scholar 

  183. Zheng CM, Liu WC, Zheng JQ, Liao MT, Ma WY, Hung KC, et al. Metabolic acidosis and strong ion gap in critically ill patients with acute kidney injury. Biomed Res Int. 2014;2014:819528.

    PubMed  PubMed Central  Google Scholar 

  184. Story DA, Morimatsu H, Bellomo R. Strong ions, weak acids and base excess: a simplified Fencl-Stewart approach to clinical acid–base disorders. Br J Anaesth. 2004;92(1):54–60.

    Article  CAS  PubMed  Google Scholar 

  185. Ahmed SM, Maheshwari P, Agarwal S, Nadeem A, Singh L. Evaluation of the efficacy of simplified Fencl-Stewart equation in analyzing the changes in acid base status following resuscitation with two different fluids. Int J Crit Illn Inj Sci. 2013;3(3):206–10.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Hoffman RS, Smilkstein MJ, Howland MA, Goldfrank LR. Osmol gaps revisited: normal values and limitations. J Toxicol Clin Toxicol. 1993;31(1):81–93.

    Article  CAS  PubMed  Google Scholar 

  187. Lynd LD, Richardson KJ, Purssell RA, Abu-Laban RB, Brubacher JR, Lepik KJ, et al. An evaluation of the osmole gap as a screening test for toxic alcohol poisoning. BMC Emerg Med. 2008;8:5.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Khajuria A, Krahn J. Osmolality revisited – deriving and validating the best formula for calculated osmolality. Clin Biochem. 2005;38(6):514–9.

    Article  CAS  PubMed  Google Scholar 

  189. Purssell RA, Pudek M, Brubacher J, Abu-Laban RB. Derivation and validation of a formula to calculate the contribution of ethanol to the osmolal gap. Ann Emerg Med. 2001;38(6):653–9.

    Article  CAS  PubMed  Google Scholar 

  190. Mahon WA, Holland J, Urowitz MB. Hyperosmolar, non-ketotic diabetic coma. Can Med Assoc J. 1968;99(22):1090–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Carstairs SD, Suchard JR, Smith T, Simon LV, Kalynych CJ, Shimada M, et al. Contribution of serum ethanol concentration to the osmol gap: a prospective volunteer study. Clin Toxicol (Phila). 2013;51(5):398–401.

    Article  CAS  Google Scholar 

  192. Garrard A, Sollee DR, Butterfield RC, Johannsen L, Wood A, Bertholf RL. Validation of a pre-existing formula to calculate the contribution of ethanol to the osmolar gap. Clin Toxicol (Phila). 2012;50(7):562–6.

    Article  CAS  Google Scholar 

  193. Sud P, Nelson LS, Bouchard M, Lee WW. Contribution of serum ethanol concentration to the osmol gap: a prospective volunteer study. Clin Toxicol (Phila). 2013;51(8):810.

    Article  CAS  Google Scholar 

  194. Siervo M, Bunn D, Prado CM, Hooper L. Accuracy of prediction equations for serum osmolarity in frail older people with and without diabetes. Am J Clin Nutr. 2014;100(3):867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Martin-Calderon JL, Bustos F, Tuesta-Reina LR, Varona JM, Caballero L, Solano F. Choice of the best equation for plasma osmolality calculation: comparison of fourteen formulae. Clin Biochem. 2015;48(7–8):529–33.

    Article  CAS  PubMed  Google Scholar 

  196. Porter WH. Invalid correction of “falsely” elevated osmol gap. J Emerg Med. 2007;32(3):311–2. author reply 2–3.

    Article  PubMed  Google Scholar 

  197. Buckley NA, Whyte IM, Dawson AH. Osmolal gap. J Toxicol Clin Toxicol. 1994;32:93–5.

    Article  Google Scholar 

  198. Hovda KE, Hunderi OH, Rudberg N, Froyshov S, Jacobsen D. Anion and osmolal gaps in the diagnosis of methanol poisoning: clinical study in 28 patients. Intensive Care Med. 2004;30(9):1842–6.

    Article  PubMed  Google Scholar 

  199. Hunderi OH, Hovda KE, Jacobsen D. Use of the osmolal gap to guide the start and duration of dialysis in methanol poisoning. Scand J Urol Nephrol. 2006;40(1):70–4.

    Article  PubMed  CAS  Google Scholar 

  200. Narins RG, Emmett M. Simple and mixed acid–base disorders: a practical approach. Medicine (Baltimore). 1980;59(3):161–87.

    Article  CAS  Google Scholar 

  201. Levy B, Perez P, Perny J, Thivilier C, Gerard A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39(3):450–5.

    Article  CAS  PubMed  Google Scholar 

  202. Heckmann M, Trotter A, Pohlandt F, Lindner W. Epinephrine treatment of hypotension in very low birthweight infants. Acta Paediatr. 2002;91(5):566–70.

    Article  CAS  PubMed  Google Scholar 

  203. Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid–base change during in vitro hemodilution. Crit Care Med. 2002;30(1):157–60.

    Article  CAS  PubMed  Google Scholar 

  204. Morgan TJ, Venkatesh B, Hall J. Crystalloid strong ion difference determines metabolic acid–base change during acute normovolaemic haemodilution. Intensive Care Med. 2004;30(7):1432–7.

    Article  PubMed  Google Scholar 

  205. Omron EM, Omron RM. A physicochemical model of crystalloid infusion on acid–base status. J Intensive Care Med. 2010;25(5):271–80.

    Article  PubMed  Google Scholar 

  206. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg. 2012;255(5):821–9.

    Article  PubMed  Google Scholar 

  207. Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91.

    Article  CAS  PubMed  Google Scholar 

  208. Graf H, Leach W, Arieff AI. Evidence for a detrimental effect of bicarbonate therapy in hypoxic lactic acidosis. Science. 1985;227(4688):754–6.

    Article  CAS  PubMed  Google Scholar 

  209. Forsythe SM, Schmidt GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest. 2000;117(1):260–7.

    Article  CAS  PubMed  Google Scholar 

  210. Liebelt EL. Targeted management strategies for cardiovascular toxicity from tricyclic antidepressant overdose: the pivotal role for alkalinization and sodium loading. Pediatr Emerg Care. 1998;14(4):293–8.

    Article  CAS  PubMed  Google Scholar 

  211. Mackway-Jones K. Towards evidence based emergency medicine: best BETs from the Manchester Royal Infirmary. Alkalinisation in the management of tricyclic antidepressant overdose. J Accid Emerg Med. 1999;16(2):139–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Woolf AD, Erdman AR, Nelson LS, Caravati EM, Cobaugh DJ, Booze LL, et al. Tricyclic antidepressant poisoning: an evidence-based consensus guideline for out-of-hospital management. Clin Toxicol (Phila). 2007;45(3):203–33.

    Article  CAS  Google Scholar 

  213. Kraut JA, Madias NE. Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol. 2012;8(10):589–601.

    Article  CAS  PubMed  Google Scholar 

  214. Gehlbach BK, Schmidt GA. Bench-to-bedside review: treating acid–base abnormalities in the intensive care unit – the role of buffers. Crit Care. 2004;8(4):259–65.

    Article  PubMed  PubMed Central  Google Scholar 

  215. Weber T, Tschernich H, Sitzwohl C, Ullrich R, Germann P, Zimpfer M, et al. Tromethamine buffer modifies the depressant effect of permissive hypercapnia on myocardial contractility in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;162(4 Pt 1):1361–5.

    Article  CAS  PubMed  Google Scholar 

  216. Marfo K, Garala M, Kvetan V, Gasperino J. Use of Tris-hydroxymethyl aminomethane in severe lactic acidosis due to highly active antiretroviral therapy: a case report. J Clin Pharm Ther. 2009;34(1):119–23.

    Article  CAS  PubMed  Google Scholar 

  217. Kallet RH, Jasmer RM, Luce JM, Lin LH, Marks JD. The treatment of acidosis in acute lung injury with tris-hydroxymethyl aminomethane (THAM). Am J Respir Crit Care Med. 2000;161(4 Pt 1):1149–53.

    Article  CAS  PubMed  Google Scholar 

  218. Nahas GG, Sutin KM, Fermon C, Streat S, Wiklund L, Wahlander S, et al. Guidelines for the treatment of acidaemia with THAM. Drugs. 1998;55(2):191–224.

    Article  CAS  PubMed  Google Scholar 

  219. Heaney D, Majid A, Junor B. Bicarbonate haemodialysis as a treatment of metformin overdose. Nephrol Dial Transplant. 1997;12(5):1046–7.

    Article  CAS  PubMed  Google Scholar 

  220. Ledebo I. Acid–base correction and convective dialysis therapies. Nephrol Dial Transplant. 2000;15 Suppl 2:45–8.

    Article  CAS  PubMed  Google Scholar 

  221. Sabeel AI, Kurkus J, Lindholm T. Intensified dialysis treatment of ethylene glycol intoxication. Scand J Urol Nephrol. 1995;29(2):125–9.

    Article  CAS  PubMed  Google Scholar 

  222. Calello DP, Liu KD, Wiegand TJ, Roberts DM, Lavergne V, Gosselin S, et al. Extracorporeal treatment for metformin poisoning: systematic review and recommendations from the extracorporeal treatments in poisoning workgroup. Crit Care Med. 2015;43:1716.

    Article  PubMed  Google Scholar 

  223. Ghannoum M, Laliberte M, Nolin TD, MacTier R, Lavergne V, Hoffman RS, et al. Extracorporeal treatment for valproic acid poisoning: systematic review and recommendations from the EXTRIP workgroup. Clin Toxicol (Phila). 2015;53(5):454–65.

    Article  CAS  Google Scholar 

  224. Gosselin S, Juurlink DN, Kielstein JT, Ghannoum M, Lavergne V, Nolin TD, et al. Extracorporeal treatment for acetaminophen poisoning: recommendations from the EXTRIP workgroup. Clin Toxicol (Phila). 2014;52(8):856–67.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This chapter is dedicated to the memory of Professor Chantal Bismuth, whose contributions to medical toxicology are innumerable and lasting. With her sharply analytical mind, incisive wit, and charming smile, she mentored hundreds of toxicologists-in-training, challenged the status quo, and brought focus to many nebulous concepts in toxicology. She will be missed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen W. Borron .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial.

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization.

  3. II-2

    Evidence obtained from well-designed cohort or case-control analytic studies, preferably from more than one center or research group.

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence.

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies, and case reports, or reports of expert committees.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Borron, S.W. (2016). Acid–Base Balance in the Poisoned Patient. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_67-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_67-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Acid–Base Balance in the Poisoned Patient
    Published:
    01 September 2016

    DOI: https://doi.org/10.1007/978-3-319-20790-2_67-2

  2. Original

    Acid–Base Balance in the Poisoned Patient
    Published:
    17 November 2015

    DOI: https://doi.org/10.1007/978-3-319-20790-2_67-1