Skip to main content

The Builders of the Oceans – Part I: Coral Architecture from the Tropics to the Poles, from the Shallow to the Deep

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Marine Animal Forests

Abstract

At any scale, corals are live buildings. Their carbonate skeletons constitute three-dimensional frameworks allowing the delicate coral polyp to emerge from the sea bottom and populate vast areas of the ocean. These constructions, reminders of the structural complexity found in the forest, are found everywhere in the Earth’s oceans, from the polar regions to the tropics and from the tidal pools to the dark abyssal plains. They can be found as solitary or in modest aggregations of a few centimeters in size or gargantuan colonies of mythological proportions; when many, they can create the largest nonhuman structures built by organisms. Life and death of the coral “trees” are influenced by the mineral architecture and the presence of bioeroders. Shape and size facilitate or restrict their access to food and light and influence structural strength tested by currents and swells. The role that corals play in the oceans defies any attempt at simplification since it transcends the life span of the small polyp, geological time, and ecological space. Long after the polyps are gone, coral skeletons continue to harbor numerous organisms of disparate nature by overgrowing, drilling, and dissolving the carbonates. These chapters are a personal journey into the coral forest of the world’s oceans, with stations along singular aspects of their present and past. Our point of departure is the ecosystem engineering of the coral polyp through the construction of its skeleton, followed by selected examples of human interactions with the “stone from the sea” ( see Chapter “The Builders of the Oceans – Part II: Corals from the Past to the Present (The Stone from the Sea)”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aburto-Oropeza O, Erisman B, Galland GR, Mascarenas-Osorio I, Sala E, Ezcurra E. Large recovery of fish biomass in a no-take marine reserve. Plos One 2011; 6.

    Google Scholar 

  • Allen J, Sanders H. The zoogeography, diversity and origin of the deep-sea protobranch bivalves of the Atlantic: the epilogue. Progr Oceanogr. 1996;38:95–153.

    Article  Google Scholar 

  • Álvarez-Filip L, Dulvy NK, Gill JA, Cote IM, Watkinson AR. Flattening of Caribbean coral reefs: region-wide declines in architectural complexity. Proc Biol Sci. 2009;276:3019–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Filip L, Gill JA, Dulvy NK, Perry AL, Watkinson AR, Côté IM. Drivers of region-wide declines in architectural complexity on Caribbean reefs. Coral Reefs. 2011a;30:1051–60.

    Article  Google Scholar 

  • Álvarez-Filip L, Dulvy NK, Côté IM, Watkinson AR, Gill JA. Coral identity underpins architectural complexity on Caribbean reefs. Ecol Appl. 2011b;21:2223–31.

    Article  PubMed  Google Scholar 

  • Álvarez-Filip L, Gill JA, Dulvy NK. Complex reef architecture supports more small-bodied fishes and longer food chains on Caribbean reefs. Ecosphere. 2011c;2:art118.

    Article  Google Scholar 

  • Álvarez-Filip L, Carricart-Ganivet JP, Horta-Puga G, Iglesias-Prieto R. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci Rep. 2013;3:3486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnes DK, Souster T. Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nat Clim Change. 2011;1:365–8. doi:10.1038/nclimate1232.

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nystrom M. Confronting the coral reef crisis. Nature. 2004;429:827–33.

    Article  CAS  PubMed  Google Scholar 

  • Bellwood DR, Renema W, Rosen BR. Biodiversity hotspots, evolution and coral reef biogeography: a review. Biotic evolution and environmental change in Southeast Asia. In: Gower DJ, Johnson KG, Richardson JE, Rosen BR, Rüber L, Williams ST, editors. Cambridge: Cambridge University Press; 2012. p. 216–45.

    Chapter  Google Scholar 

  • Bozec YM, Álvarez-Filip L, Mumby PJ. The dynamics of architectural complexity on coral reefs under climate change. Glob Chang Biol. 2015;21:223–35.

    Article  PubMed  Google Scholar 

  • Braga-Henriques A, Porteiro F, Ribeiro P, Vd M, Sampaio Í, Ocaña O, Santos R. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic). Biogeosci. 2013;10:4009–4036.

    Google Scholar 

  • Brooke S, Young CM. Embryogenesis and larval biology of the ahermatypic scleractinian Oculina varicosa. Mar Biol. 2005;146:665–75.

    Article  Google Scholar 

  • Buhl-Mortensen L, Vanreusel A, Gooday AJ, Levin LA, Priede IG, Buhl-Mortensen P, Gheerardyn H, King NJ, Raes M. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar Ecol. 2010;31:21–50.

    Article  Google Scholar 

  • Carney RS. Zonation of deep biota on continental margins. Oceanogr Mar Biol Annu Rev. 2005;43:211–78.

    Article  Google Scholar 

  • Chapelle G, Peck LS. Polar gigantism dictated by oxygen availability. Nature. 1999;399:114–5.

    Article  CAS  Google Scholar 

  • Clark GF, Raymond B, Riddle MJ, Stark JS, Johnston EL. Vulnerability of Antarctic shallow invertebrate-dominated ecosystems. Austral Ecol. 2015;40:482–91.

    Article  Google Scholar 

  • Clarke A. Ecological stoichiometry in six species of Antarctic marine benthos. Mar Ecol Prog Ser. 2008;369:25–37.

    Article  Google Scholar 

  • Erwin T. Tropical forests: their richness in Coleoptera and other arthropod species. Coleopt Bull. 1982;36(I):74–5.

    Google Scholar 

  • Eschmeyer WN, Fricke R, Fong JD, Polack DA. Marine fish diversity: history of knowledge and discovery (Pisces). Zootaxa. 2010;2525:19–50.

    Google Scholar 

  • Fosså JH, Lindberg B, Christensen O, Lundälv T, Svellingen I, Mortensen PB, Alvsvåg J. Mapping of Lophelia reefs in Norway: experiences and survey methods. In: Freiwald A, Roberts JM, editors. Cold-water corals and ecosystems. Berlin: Springer; 2005. p. 359–91.

    Chapter  Google Scholar 

  • Ginsburg RN. Geological and biological roles of cavities in coral reefs. In: Barnes DJ, editor. Perspectives on coral reefs. Townsville: Australian Institute of Marine Science; 1983. p. 148–53.

    Google Scholar 

  • Glynn PW. State of coral reefs in the Galapagos Islands: Natural vs anthropogenic impacts. Mar Pollut Bull. 1994;29:131–40.

    Article  CAS  Google Scholar 

  • Glynn PW. Fish utilization of simulated coral reef frameworks versus eroded rubble substrates off Panamá, eastern Pacific. Proc 10th Int Coral Reef Sym Okinawa. 2006;1:250–6.

    Google Scholar 

  • Glynn PW, Enochs IC. Invertebrates and their roles in coral reef ecosystems. In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. New York: Springer; 2011. p. 273–325.

    Chapter  Google Scholar 

  • Goh NK, Ng PK, Chou L. Notes on the shallow water gorgonian-associated fauna on coral reefs in Singapore. Bull Mar Sci. 1999;65:259–82.

    Google Scholar 

  • Graham NAJ, McClanahan TR, Letourneur Y, Galzin R. Anthropogenic stressors, inter-specific competition and ENSO effects on a Mauritian coral reef. Environ Biol Fishes. 2007;78:57–69.

    Article  Google Scholar 

  • Gutt J, Piepenburg D. Scale-dependent impact on diversity of Antarctic benthos caused by grounding of icebergs. Mar Ecol Progr Ser. 2003;253:77–83.

    Article  Google Scholar 

  • Gutt J, Starmans A. Quantification of iceberg impact and benthic recolonisation patterns in the Weddell Sea (Antarctica). Polar Biol. 2001;24:615–9.

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE. A global map of human impact on marine ecosystems. Science. 2008;319:948–52.

    Article  CAS  PubMed  Google Scholar 

  • Jackson J, Buss L. Alleopathy and spatial competition among coral reef invertebrates. Proc Natl Acad Sci. 1975;72:5160–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson JBC, Donovan MK, Cramer KL, Lam VV. Status and trends of Caribbean coral reefs: 1970–2012. Global coral reef monitoring network. Gland: IUCN; 2014.

    Google Scholar 

  • Johnson DW. Habitat complexity modifies post-settlement mortality and recruitment dynamics of a marine fish. Ecology. 2007;88:1716–25.

    Article  PubMed  Google Scholar 

  • Knowlton N, Jackson J. The ecology of coral reefs. In: Bertness MD, Gaines SD, Hay ME, editors. Marine community ecology. Sunderland: Sinauer Associates; 2001. p. 395–422.

    Google Scholar 

  • Knowlton N, Jackson JBC. Shifting baselines, local impacts, and global change on coral reefs. Plos Biology. 2008;6:215–20.

    Article  CAS  Google Scholar 

  • Larsson AI, Jarnegren J, Stromberg SM, Dahl MP, Lundalv T, Brooke S. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PloS One. 2014;9:e102222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovelock JG. Gaia: A new look at life on earth. Oxford: Oxford University Press; 1979.

    Google Scholar 

  • Lo Iacono C, Gràcia E, Ranero CR, Emelianov M, Huvenne VAI, Bartolomé R, Booth-Rea G, Prades J. The West Melilla cold water coral mounds, Eastern Alboran sea: morphological characterization and environmental context. Deep-Sea Res Part II Top Stud Oceanogr. 2014;99:316–26.

    Google Scholar 

  • Martínez-Cruz J, Téllez Valdés O, Ibarra-Manríquez G. Estructura de los encinares de la sierra de Santa Rosa, Guanajuato, México. Rev Mex Biodiv. 2009;80:145–56.

    Google Scholar 

  • McClain CR, Lundsten L, Ream M, Barry J, DeVogelaere A. Endemicity, biogeography, composition, and community structure on a Northeast Pacific seamount. PLoS One. 2009;4:e4141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morato T, Varkey DA, Damaso C, Machete M, Santos M, Prieto R, Santos RS, Pitcher TJ. Evidence of a seamount effect on aggregating visitors. Mar Ecol Prog Ser. 2008;357:23–32.

    Article  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L. Distribution of deep-water gorgonian corals in relation to benthic habitat features in the Northeast Channel (Atlantic Canada). Mar Biol. 2004;144:1223–38.

    Article  Google Scholar 

  • Mortensen PB, Hovland T, Fossa JH, Furevik DM. Distribution, abundance and size of Lophelia pertusa coral reefs in mid-Norway in relation to seabed characteristics. J Mar Biol Assoc UK. 2001;81:581–97.

    Article  Google Scholar 

  • Mortensen PB, Buhl-Mortensen L, Gebruk AV, Krylova EM. Occurrence of deep-water corals on the Mid-Atlantic Ridge based on MAR-ECO data. Deep-Sea Res Part II Top Stud Oceanogr. 2008;55:142–52.

    Article  Google Scholar 

  • Orejas C, Gili JM, Arntz W. Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar Ecol Prog Ser. 2003;250:105–16.

    Article  Google Scholar 

  • Orejas C, Gori A, Lo Iacono C, Puig P, Gili JM, Dale MRT. Cold-water corals in the Cap de Creus canyon, northwestern Mediterranean: spatial distribution, density and anthropogenic impact. Mar Ecol Prog Ser. 2009;397:37–51.

    Google Scholar 

  • Pearse AS. Inhabitants of certain sponges at dry Tortuga. 28Washington, DC: Carnegie Institution of Washington Publication; 1932. p. 117–24.

    Google Scholar 

  • Perry CT, Edinger EN, Kench PS, Murphy GN, Smithers SG, Steneck RS, Mumby PJ. Estimating rates of biologically driven coral reef framework production and erosion: a new census-based carbonate budget methodology and applications to the reefs of Bonaire. Coral Reefs. 2012;31:853–68.

    Article  Google Scholar 

  • Piepenburg D. Recent research on Arctic benthos: common notions need to be revised. Polar Biol. 2005;28:733–55.

    Article  Google Scholar 

  • Porteiro FM, Gomes-Pereira JN, Pham CK, Tempera F, Santos RS. Distribution and habitat association of benthic fish on the Condor seamount (NE Atlantic, Azores) from in situ observations. Deep-Sea Res Part II Top Stud Oceanogr. 2013;98:114–28.

    Article  Google Scholar 

  • Pratchett MS, Munday P, Wilson SK, Graham NA, Cinner J, Bellwood DR, Jones GP, Polunin NV, McClanahan T. Effects of climate-induced coral bleaching on coral-reef fishes. Ecological and economic consequences. Oceanogr Mar Biol Ann Rev. 2008;46:251–96.

    Article  Google Scholar 

  • Rauschert M, Arnzt WE. Antarctic macrobenthos. A field guide of the invertebrates living at the Antarctic seafloor. Arntz & Rauschert Selbstverlag. 2015; 143p.

    Google Scholar 

  • Reaka-Kudla ML. The global biodiversity of coral reefs: a comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO, editors. Biodiversity II: understanding and protecting our biological resources. Washington, DC: National Academy Press; 1997. p. 83–108.

    Google Scholar 

  • Reaka-Kudla ML. Biodiversity of Caribbean coral reefs. In: Miloslavich P, Klein E, editors. Caribbean marine biodiversity: the known and the unknown. Lancaster: DEStech Publications; 2005. p. 259–76.

    Google Scholar 

  • Richmond RH, Wolanski E. Coral research: past efforts and future horizons. In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. New York: Springer; 2011. p. 3–10.

    Chapter  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science. 2001;295:1280–4.

    Article  Google Scholar 

  • Roberts JM, Wheeler A, Freiwald A, Cairns S. Cold-water corals. The biology and geology of deep-sea corals habitats. Cambridge University Press; 2009. 334p.

    Google Scholar 

  • Rodríguez E, Orejas C, López-González PJ, Gili JM. Reproduction in the externally brooding sea anemone Epiactis georgiana in the Antarctic Peninsula and the Weddell Sea. Mar Biol. 2013;160:67–80.

    Article  Google Scholar 

  • Rowden AA, Dower JF, Schlacher TA, Consalvey M, Clark MR. Paradigms in seamount ecology: fact, fiction and future. Mar Ecol. 2010;31:226–41.

    Article  Google Scholar 

  • Rützler K. Sponges on coral reefs: a community shaped by competitive cooperation. Boll Mus Ist Biol Univ Genova. 2004;68:85–148.

    Google Scholar 

  • Sampaio I, Braga-Henriques A, Pham C, Ocana O, De Matos V, Morato T, Porteiro FM. Cold-water corals landed by bottom longline fisheries in the Azores (north-eastern Atlantic). J Mar Biol Assoc UK. 2012;92:1547–55.

    Article  Google Scholar 

  • Schutte VGW, Selig ER, Bruno JF. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar Ecol Prog Ser. 2010;402:115–22.

    Article  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR. Zoo-plankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol. 1996;127:303–18.

    Article  Google Scholar 

  • Smale DA, Barnes DKA, Fraser KPP. The influence of depth, site exposure and season on the intensity of iceberg scouring in nearshore Antarctic waters. Polar Biol. 2007;30:769–79. doi:10.1007/s00300-006-0236-0.

    Article  Google Scholar 

  • Sorokin YI. Coral reef ecology. In: Lange OL, Mooney HA, Remmert H, editors. Ecological studies. Analyses and synthesis. 102 New York: Springer; 1994. 461p.

    Google Scholar 

  • Steneck RS, Paris CB, Arnold SN, Ablan-Lagman MC, Alcala AC, Butler MJ, McCook LJ, Russ GR, Sale PF. Thinking and managing outside the box: coalescing connectivity networks to build region-wide resilience in coral reef ecosystems. Coral Reefs. 2009;28:367–78.

    Article  Google Scholar 

  • Thomas DN, Fogg GE, Convey P, Gili JM, Gradinger R, Laybourn-Parry J, Reid K, Walton DW. The biology of polar regions. Oxford: Oxford University Press; 2008.

    Book  Google Scholar 

  • Todd PA. Morphological plasticity in scleractinian corals. Biol Rev. 2008;83:315–37.

    Article  PubMed  Google Scholar 

  • Valiela I. Marine ecological processes. New York: Springer; 1995. 686p.

    Google Scholar 

  • Vosburgh F. Acropora reticulata: structure, mechanics and ecology of a reef coral. Proc R Soc Lond B Biol Sci. 1982;214:481–99.

    Article  Google Scholar 

  • Wilson EO. The earliest known ants: an analysis of the Cretaceous species and an inference concerning their social organization. Paleobiology. 1987;13(1):44–53.

    Article  Google Scholar 

Download references

Acknowledgments

Thanks are due to Marina Carreiro, Filipe Porteiro, Iris Sampaio (ImagDOP), Paal Buhl-Mortensen (IMR), Josep Maria Gili (ICM-CSIC), J.M. Roberts (Changing Ocean Expedition, Heriot-Watt University), J.M. Aldrey Vázquez (Grupo de Estudo do Medio Mariño), T. Lundälv (University of Gothenburg, Sweden; AWI, Bremerhaven, Germany), ICM-CSIC/IFM-GEOMAR, SEHAMA, ImagDOP/EMAM, and Ricardo Aguilar (OCEANA) for facilitating images for this chapter. Thanks to Àngel López-Sanz for performing Fig. 9 and to Jordi Corbera for supplying the fantastic drawings in Fig. 14. Also friends and family (Jacob González-Solís, Jorge Bartolomé Zofío, Elmar Isbert) are greatly acknowledged for allowing us to use their private images and for going to the field to specifically take pictures for this chapter. Thanks also to L. Álvarez-Filip, WE Arntz and one anonymous reviewer for their constructive comments which highly contribute to improve the manuscript. Last but not least, many thanks to Heather Baxter for her great help and patience with the English editing. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 678760 (ATLAS). This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained therein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Covadonga Orejas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Orejas, C., Jiménez, C. (2017). The Builders of the Oceans – Part I: Coral Architecture from the Tropics to the Poles, from the Shallow to the Deep. In: Rossi, S., Bramanti, L., Gori, A., Orejas , C. (eds) Marine Animal Forests. Springer, Cham. https://doi.org/10.1007/978-3-319-17001-5_10-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17001-5_10-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17001-5

  • Online ISBN: 978-3-319-17001-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    The Builders of the Oceans – Part I: Coral Architecture from the Tropics to the Poles, from the Shallow to the Deep
    Published:
    27 March 2017

    DOI: https://doi.org/10.1007/978-3-319-17001-5_10-2

  2. Original

    The Builders of the Oceans – Part I: Coral Architecture from the Tropics to the Poles, from the Shallow to the Deep
    Published:
    27 December 2016

    DOI: https://doi.org/10.1007/978-3-319-17001-5_10-1