Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Human Brain Evolution

  • Chet C. SherwoodEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_813-1

Definition

There have been significant changes in brain development, anatomy, and molecular biology over the course of human evolution.

Introduction

Modern humans are characterized by remarkable specializations of cognition, including a language that is rich in syntactic complexity and symbolic meaning, a nuanced understanding of the mental states of others, a strong motivation to share in pursuing joint goals, an ability to manufacture sophisticated tools, and an extraordinary capacity for cultural learning. What are the evolutionary changes in brain structure and molecular biology that underlie these cognitive faculties? A comprehensive understanding of human brain evolution requires data from multiple perspectives, incorporating information from fossils, archaeology, comparative neuroanatomy, and genetics.

Evolution of the brain in the human lineage

Compared to other primates and our earliest hominin ancestors, modern humans have very large brains. Weighing approximately 1,400 g on...

This is a preview of subscription content, log in to check access.

References

  1. A de Sousa, & Cunha E. (2012) Hominins and the emergence of the modern human brain. Progress in Brain Research 195, 293–322Google Scholar
  2. Balsters, J. H., Cussans, E., Diedrichsen, J., Phillips, K. A., Preuss, T. M., Rilling, J. K., & Ramnani, N. (2010). Evolution of the cerebellar cortex: The selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage, 49, 2045–2052.CrossRefGoogle Scholar
  3. Balzeau, A., Gilissen, E., & Grimaud-Hervé, D. (2011). Shared pattern of endocranial shape asymmetries among great apes, anatomically modern humans, and fossil hominins. PLoS One, 7, e29581.CrossRefGoogle Scholar
  4. Barton, R. A., & Venditti, C. (2013). Human frontal lobes are not relatively large. Proceedings of the National Academy of Sciences of the United States of America, 110, 9001–9006.CrossRefGoogle Scholar
  5. Bianchi, S., Stimpson, C. D., Duka, T., Larsen, M. D., Janssen, W. G., Collins, Z., Bauernfeind, A. L., Schapiro, S. J., Baze, W. B., McArthur, M. J., Hopkins, W. D., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Jacobs, B., Hof, P. R., & Sherwood, C. C. (2013). Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans. Proceedings of the National Academy of Sciences of the United States of America, 110(Supplement 2), 10395–10401.CrossRefGoogle Scholar
  6. Bruner, E., Manzi, G., & Arsuaga, J. L. (2003). Encephalization and allometric trajectories in the genus Homo: Evidence from the Neandertal and modern lineages. Proceedings of the National Academy of Sciences of the United States of America, 100, 15335–15340.CrossRefGoogle Scholar
  7. Bruner, E., Preuss, T. M., Chen, X., & Rilling, J. K. (2017). Evidence for expansion of the precuneus in human evolution. Brain Structure & Function, 222(2), 1053–1060.CrossRefGoogle Scholar
  8. Buckner, R. L., & Krienen, F. M. (2013). The evolution of distributed association networks in the human brain. Trends in Cognitive Sciences, 17, 648–665.CrossRefGoogle Scholar
  9. Bufill, E., Agustí, J., & Blesa, R. (2011). Human neoteny revisited: The case of synaptic plasticity. American Journal of Human Biology, 23, 729–739.CrossRefGoogle Scholar
  10. Cáceres, M., Lachuer, J., Zapala, M. A., Redmond, J. C., Kudo, L., Geschwind, D. H., Lockhart, D. J., Preuss, T. M., & Barlow, C. (2003). Elevated gene expression levels distinguish human from non-human primate brains. Proceedings of the National Academy of Sciences of the United States of America, 100, 13030–13035.CrossRefGoogle Scholar
  11. Charrier, C., Joshi, K., Coutinho-Budd, J., Kim, J. E., Lambert, N., de Marchena, J., Jin, W. L., Vanderhaeghen, P., Ghosh, A., Sassa, T., & Polleux, F. (2012). Inhibition of SRGAP2 function by its human-specific paralogs induces neoteny during spine maturation. Cell, 149, 923–935.CrossRefGoogle Scholar
  12. Donahue, C. J., Glasser, M. F., Preuss, T. M., Rilling, J. K., & Van Essen, D. C. (2018). Quantitative assessment of prefrontal cortex in humans relative to nonhuman primates. Proceedings of the National Academy of Sciences of the United States of America, 115, E5183–E5192.CrossRefGoogle Scholar
  13. Du, A., Zipkin, A. M., Hatala, K. G., Renner, E., Baker, J. L., Bianchi, S., Bernal, K. H., Wood, B. A. (2018). Pattern and process in hominin brain size evolution are scale-dependent. Proceedings of the Biological Sciences, 285(1873). pii: 20172738.CrossRefGoogle Scholar
  14. Dunsworth, H. M., Warrener, A. G., Deacon, T., Ellison, P. T., & Pontzer, H. (2012). Metabolic hypothesis for human altriciality. Proceedings of the National Academy of Sciences of the United States of America, 109, 15212–15216.CrossRefGoogle Scholar
  15. Enard, W. (2011). FOXP2 and the role of cortico-basal ganglia circuits in speech and language evolution. Current Opinion in Neurobiology, 21, 415–424.CrossRefGoogle Scholar
  16. Enard, W., Khaitovich, P., Klose, J., Zöllner, S., Heissig, F., Giavalisco, P., Nieselt-Struwe, K., Muchmore, E., Varki, A., Ravid, R., Doxiadis, G. M., Bontrop, R. E., & Pääbo, S. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, 296, 340–343.CrossRefGoogle Scholar
  17. Falk, D. (2012). Hominin paleoneurology: Where are we now? Progress in Brain Research, 195, 255–272.CrossRefGoogle Scholar
  18. Falk, D., Hildebolt, C., Smith, K., Morwood, M. J., Sutikna, T., Brown, P., Jatmiko, S. E. W., Brunsden, B., & Prior, F. (2005). The brain of LB1, Homo floresiensis. Science, 308, 242–245.CrossRefGoogle Scholar
  19. Fjell, A. M., Westlye, L. T., Amlien, I., Tamnes, C. K., Grydeland, H., Engvig, A., Espeseth, T., Reinvang, I., Lundervold, A. J., Lundervold, A., & Walhovd, K. B. (2015). High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cerebral Cortex, 25, 26–34.CrossRefGoogle Scholar
  20. Florio, M., Borrell, V., & Huttner, W. B. (2017). Human-specific genomic signatures of neocortical expansion. Current Opinion in Neurobiology, 42, 33–44.CrossRefGoogle Scholar
  21. Gabi, M., Neves, K., Masseron, C., Ribeiro, P. F. M., Ventura-Antunes, L., Torres, L., Mota, B., Kaas, J. H., & Herculano-Houzel, S. (2016). No relative expansion of the number of prefrontal neurons in primate and human evolution. Proceedings of the National Academy of Sciences of the United States of America, 113, 9617–9622.CrossRefGoogle Scholar
  22. Gil-da-Costa, R., Martin, A., Lopes, M. A., Muñoz, M., Fritz, J. B., & Braun, A. R. (2006). Species-specific calls activate homologs of Broca’s and Wernicke’s areas in the macaque. Nature Neuroscience, 9, 1064–1070.CrossRefGoogle Scholar
  23. Halley, A.C. (2017). Minimal variation in eutherian brain growth rates during fetal neurogenesis. Proceedings of the Biological Sciences, 284(1854). pii: 20170219.CrossRefGoogle Scholar
  24. Hawkes, K., & Finlay, B. L. (2018). Mammalian brain development and our grandmothering life history. Physiology & Behavior, 193(Pt A), 55–68.CrossRefGoogle Scholar
  25. Hecht, E. E., Gutman, D. A., Bradley, B. A., Preuss, T. M., & Stout, D. (2015). Virtual dissection and comparative connectivity of the superior longitudinal fasciculus in chimpanzees and humans. NeuroImage, 108, 124–137.CrossRefGoogle Scholar
  26. Holloway, R. L. (2015). Brain evolution. In M. P. Muehlenbein (Ed.), Basics in human evolution (pp. 235–250). New York: Academic Press.CrossRefGoogle Scholar
  27. Holloway, R. L., Hurst, S. D., Garvin, H. M., Schoenemann, P. T., Vanti, W. B., Berger, L. R., & Hawks, J. (2018). Endocast morphology of Homo naledi from the Dinaledi chamber, South Africa. Proceedings of the National Academy of Sciences of the United States of America, 115, 5738–5743.CrossRefGoogle Scholar
  28. Hopkins, W. D., Misiura, M., Pope, S. M., & Latash, E. M. (2015). Behavioral and brain asymmetries in primates: A preliminary evaluation of two evolutionary hypotheses. Annals of the New York Academy of Sciences, 1359, 65–83.CrossRefGoogle Scholar
  29. Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.Google Scholar
  30. Kuzawa, C. W., Chugani, H. T., Grossman, L. I., Lipovich, L., Muzik, O., Hof, P. R., Wildman, D. E., Sherwood, C. C., Leonard, W. R., & Lange, N. (2014). Metabolic costs and evolutionary implications of human brain development. Proceedings of the National Academy of Sciences of the United States of America, 111, 13010–13015.CrossRefGoogle Scholar
  31. Mars, R. B., Passingham, R. E., Neubert, F-X., Verhagen, L., Sallet, J. (2017). Evolutionary specializations of human association cortex. Chapter 4.12. In J Kaas, T.M. Preuss (Eds.), Evolution of nervous systems (2nd ed.). Cambridge, MA: Academic Press, pps. 185–205.CrossRefGoogle Scholar
  32. Martin, R. D. (1990). Primate origins and evolution: A phylogenetic reconstruction. Princeton: Princeton University Press.Google Scholar
  33. Miller, D. J., Duka, T., Stimpson, C. D., Schapiro, S. J., Baze, W. B., McArthur, M. J., Fobbs, A. J., Sousa, A. M., Sestan, N., Wildman, D. E., Lipovich, L., Kuzawa, C. W., Hof, P. R., & Sherwood, C. C. (2012). Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences of the United States of America, 109, 16480–16485.CrossRefGoogle Scholar
  34. Mortensen, H. S., Pakkenberg, B., Dam, M., Dietz, R., Sonne, C., Mikkelsen, B., & Eriksen, N. (2014). Quantitative relationships in delphinid neocortex. Frontiers in Neuroanatomy, 8, 132.CrossRefGoogle Scholar
  35. Muntané, G., Horvath, J. E., Hof, P. R., Ely, J. J., Hopkins, W. D., Raghanti, M. A., Lewandowski, A. H., Wray, G. A., & Sherwood, C. C. (2015). Analysis of synaptic gene expression in the neocortex of primates reveals evolutionary changes in glutamatergic neurotransmission. Cerebral Cortex, 25, 1596–1607.CrossRefGoogle Scholar
  36. Neubauer, S., Hublin, J. J., & Gunz, P. (2018). The evolution of modern human brain shape. Science Advances, 4(1), eaao5961.CrossRefGoogle Scholar
  37. Orban, G. A., Claeys, K., Nelissen, K., Smans, R., Sunaert, S., Todd, J. T., Wardak, C., Durand, J.-B., & Vanduffel, W. (2006). Mapping the parietal cortex of human and non-human primates. Neuropsychologia, 44, 2647–2667.CrossRefGoogle Scholar
  38. Petanjek, Z., Judaš, M., Šimic, G., Rasin, M. R., Uylings, H. B., Rakic, P., & Kostovic, I. (2011). Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 108, 13281–13286.CrossRefGoogle Scholar
  39. Preuss, T. M. (2011). The human brain: Rewired and running hot. Annals of the New York Academy of Sciences, 1225(Suppl 1), E182–E191.CrossRefGoogle Scholar
  40. Raghanti, M. A., Edler, M. K., Stephenson, A. R., Wilson, L. J., Hopkins, W. D., Ely, J. J., Erwin, J. M., Jacobs, B., Hof, P. R., & Sherwood, C. C. (2016). Human-specific increase of dopaminergic innervation in a striatal region associated with speech and language: A comparative analysis of the primate basal ganglia. The Journal of Comparative Neurology, 524, 2117–2129.CrossRefGoogle Scholar
  41. Rilling, J. K. (2014). Comparative primate neuroimaging: Insights into human brain evolution. Trends in Cognitive Sciences, 18, 46–55.CrossRefGoogle Scholar
  42. Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11, 426–428.CrossRefGoogle Scholar
  43. Rosenberg, K. R. (1992). The evolution of modern human childbirth. American Journal of Physical Anthropology, 35(S15), 89–124.CrossRefGoogle Scholar
  44. Sakai, T., Mikami, A., Tomonaga, M., Matsui, M., Suzuki, J., Hamada, Y., Tanaka, M., Miyabe-Nishiwaki, T., Makishima, H., Nakatsukasa, M., & Matsuzawa, T. (2011). Differential prefrontal white matter development in chimpanzees and humans. Current Biology, 21, 1397–1402.CrossRefGoogle Scholar
  45. Schenker, N. M., Buxhoeveden, D. P., Blackmon, W. L., Amunts, K., Zilles, K., & Semendeferi, K. (2008). A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca’s area in humans and great apes. The Journal of Comparative Neurology, 510, 117–128.CrossRefGoogle Scholar
  46. Sherwood, C. C., & Gómez-Robles, A. (2017). Brain plasticity and human evolution. Annual Review of Anthropology, 46, 399–419.CrossRefGoogle Scholar
  47. Smaers, J. B., Gómez-Robles, A., Parks, A. N., & Sherwood, C. C. (2017). Exceptional evolutionary expansion of prefrontal cortex in great apes and humans. Current Biology, 27, 714–720.CrossRefGoogle Scholar
  48. Somel, M., Liu, X., & Khaitovich, P. (2013). Human brain evolution: Transcripts, metabolites and their regulators. Nature Reviews. Neuroscience, 14, 112–127.CrossRefGoogle Scholar
  49. Sousa, A. M. M., Zhu, Y., Raghanti, M. A., Kitchen, R. R., Onorati, M., Tebbenkamp, A. T. N., Stutz, B., Meyer, K. A., Li, M., Kawasawa, Y. I., Liu, F., Perez, R. G., Mele, M., Carvalho, T., Skarica, M., Gulden, F. O., Pletikos, M., Shibata, A., Stephenson, A. R., Edler, M. K., Ely, J. J., Elsworth, J. D., Horvath, T. L., Hof, P. R., Hyde, T. M., Kleinman, J. E., Weinberger, D. R., Reimers, M., Lifton, R. P., Mane, S. M., Noonan, J. P., State, M. W., Lein, E. S., Knowles, J. A., Marques-Bonet, T., Sherwood, C. C., Gerstein, M. B., & Sestan, N. (2017). Molecular and cellular reorganization of neural circuits in the human lineage. Science, 358, 1027–1032.CrossRefGoogle Scholar
  50. Stout, D., & Chaminade, T. (2007). The evolutionary neuroscience of tool making. Neuropsychologia, 45, 1091–1100.CrossRefGoogle Scholar
  51. Suzuki, I. K., Gacquer, D., Van Heurck, R., Kumar, D., Wojno, M., Bilheu, A., Herpoel, A., Lambert, N., Cheron, J., Polleux, F., Detours, V., & Vanderhaeghen, P. (2018). Human-specific NOTCH2NL genes expand cortical neurogenesis through delta/notch regulation. Cell, 173, 1370–1384.e16.CrossRefGoogle Scholar
  52. Uddin, M., Wildman, D. E., Liu, G., Xu, W., Johnson, R. M., Hof, P. R., Kapatos, G., Grossman, L. I., & Goodman, M. (2004). Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 101, 2957–2962.CrossRefGoogle Scholar
  53. Wilson, B., Kikuchi, Y., Sun, L., Hunter, D., Dick, F., Smith, K., Thiele, A., Griffiths, T. D., Marslen-Wilson, W. D., & Petkov, C. I. (2015). Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans. Nature Communications, 6, 8901.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Anthropology and Center for the Advanced Study of Human PaleobiologyThe George Washington UniversityWashingtonUSA

Section editors and affiliations

  • Steven Arnocky
    • 1
  1. 1.Department of Psychology, Faculty of Arts and SciencesNipissing UniversityNorth BayCanada