Skip to main content

Senescence

  • Living reference work entry
  • First Online:
Encyclopedia of Evolutionary Psychological Science
  • 66 Accesses

Synonyms

Advanced age; Aging; Old age

Definition

Senescence is a multifactorial, deleterious, progressive, and cumulative alteration of cells and somatic structures that occurs in an age-related, but not age-determined, fashion, thereby decreasing individual probabilities of survival and reproduction with increasing age.

Senescence is a soma-wide process of functional losses secondary to decreased replicative capacity in dividing cells and accumulated exposures to stressors and related damage in both dividing and nondividing cells as their time of survival increases. Senescent biology progresses as age-related declines in cellular, tissue, and organ fidelity and function lead to decreased reproductive potential, physiological and psychological dysregulation, and increased probability of death.

Introduction

Currently, across multiple populations, average life spans exceed 80 years (e.g., Italy, Japan, Sweden, women in the USA), and the verified maximum human life span has exceeded 121...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arking, R. (2006). The biology of aging: Observations and principles (3rd ed.). New York: Oxford University Press.

    Google Scholar 

  • Austad, S. (1997). Why we age: What science is discovering about the body’s journey through life. Wiley: New York.

    Google Scholar 

  • Bell, F. C., & Miller, M. L. (2002). Life tables for the United States social security area 1900–2100 (Actuarial study no. 116). Table 6 – Period Life Tables for U. S. Social Security Area by Calendar Year and Sex. SSA Pub. No. 11-11536 August 2002, Baltimore: Social Security Administration, Office of the Chief Actuary. http://www.ssa.gov/OACT/NOTES/actstud.html.

  • Camus, J. P. (1966). Gout, diabetes, hyperlipidemia: A metabolic trisyndrome. Revue du Rhumatisme et des Maladies Ostéo-Articulaires, 33, 10–14.

    PubMed  Google Scholar 

  • Carey, J. R., & Judge, D. S. (2000). Postreproductive life predicted by primate patterns. The Journals of Gerontology: Series A, 55(4): B201–B209. https://doi.org/mi093/gerona/55.4.B201.

  • Caspari, R., & Lee, S. H. (2004). Older age becomes common late in human evolution. Proceedings of the National Academy of Sciences U.S.A., 101, 10895–10900. https://doi.org/10.1073/pnas.0402857101.

    Article  Google Scholar 

  • Cheng, H., Gary, L. C., Curtis, J. R., Saag, K. G., Kilgore, M. L., Morrisey, M. A., et al. (2009). Estimated prevalence and patterns of presumed osteoporosis among older Americans based on Medicare data. Osteoporosis International, 20(9), 1507–1515. https://doi.org/10.1007/s00198-009-0835-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Crews, D. E. (2003). Human senescence: Evolutionary and biocultural perspectives. New York: Cambridge University Press.

    Book  Google Scholar 

  • Crews, D. E., & Bogin, B. (2010). Growth, development, senescence, and aging: A life history perspective. In C. S. Larsen (Ed.), A companion to biological anthropology (pp. 128–152). New York: Wiley-Blackwell.

    Google Scholar 

  • Crews, D. E., & Ice, G. J. (2012). Aging, senescence and human variation. In S. Stinson, B. Bogin, & D. O’Rourke (Eds.), Human biology: An evolutionary and biocultural perspective (2nd ed., pp. 602–637). New York: Wiley-Blackwell.

    Google Scholar 

  • Dunbar, R. I. M. (1998). The social brain hypothesis. Evolutionary Anthropology, 6(5), 178–190. https://doi.org/10.1002/(SICI)1520-6505(1998)6:5<178::AID-EVAN5>3.0.CO;2-8.

    Article  Google Scholar 

  • Edes, A. N., & Crews, D. E. (2017). Allostatic load in biological anthropology. Yearbook of Physical Anthropoid. https://doi.org/10.1002/AJPA.23146.

  • Ellison, P. T. (2014). Evolutionary tradeoffs. Evolution, Medicine, and Public Health, 93. https://doi.org/10.1093/emph/eou015.

  • Foley, R. (1995). The adaptive legacy of human evolution: A search for the environment of evolutionary adaptedness. Evolutionary Anthropology 4(6): 194–203. https://doi.org/10.1002/evan.1360040603

  • Hoeppner, M. P., Gardner, P. P., & Poole, A. M. (2012). Comparative analysis of RNA families reveals distinct repertoires for each domain of life. PLoS Computational Biology, 8, 11. https://doi.org/10.1371/journal.pcbi.1002752.

    Article  Google Scholar 

  • Katz, S. A., Ford, A. B., Moskowitz, R. W., Jackson, B. A., & Jaffee, M. W. (1963). Studies of illness in the aged. The index of ADL: A standardized measure of biological and psychosocial function. JAMA, 185, 94–101.

    Article  Google Scholar 

  • Kim, S., & Jazwinski, S. M. (2015). Quantitative measures of healthy aging and biological age. Healthy Aging Research, 4, 26. https://doi.org/10.12715/har.2015.4.26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirkwood, T. B. L., & Austad, S. (2000). Why do we age? Nature, 408, 233–238. https://doi.org/10.1038/35041682.

    Article  PubMed  Google Scholar 

  • Labbadia, J., & Morimoto, R. I. (2015). Repression of heat shock response is a programmed event at the onset of reproduction. Molecular Cell, 59(4), 639–650. https://doi.org/10.1016/j.molcel.2015.06.027.

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine, M. E., & Crimmins, E. M. (2014). A comparison of methods for assessing mortality risk. American Journal of Human Biology, 26(6), 768–776. https://doi.org/10.1002/ajhb.22595.

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. (2013). The hallmarks of aging. Open Archive PlumX Metrics. https://doi.org/10.1016/j.cell.2013.05.039.

  • McEwen, B. S. (1998). Stress, adaptation, and disease: Allostasis and allostatic load. Annals of the New York Academy of Sciences, 840(1), 33–44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x.

    Article  PubMed  Google Scholar 

  • McEwen, B. S. (2003). Interacting mediators of allostasis and allostatic load: Towards an understanding of resilience in aging. Metabolism, 52(suppl 2), 10–16. https://www.ncbi.nlm.nih.gov/pubmed/14577057.

    Article  Google Scholar 

  • McEwen, B. S., & Seeman, T. E. (1999). Protective and Damaging Effects of Mediators of Stress: Elaborating and Testing the Concepts of Allostasis and Allostatic Load. Annals of the New York Academy of Sciences 896:30–47.

    Google Scholar 

  • Oksuzyan, A., Juel, K., Vaupel, J. W., & Christensen, K. (2008). Men: Good health and high mortality. Sex differences in health and aging. Aging Clinical and Experimental Research, 20(2), 91–102. PMCID: PMC3629373.

    Article  Google Scholar 

  • Rose M. (1994). Evolutionary biology of aging. Oxford University Press: New York.

    Google Scholar 

  • Sterling, P., & Eyer, J. (1988). Allostasis: A new paradigm to explain arousal pathology. In S. Fisher & J. Reason (Eds.), Handbook of life stress, cognition and health (pp. 629–649). New York: Wiley.

    Google Scholar 

  • Studenski, S., Hayes, R. P., Leibowitz, R. Q., Bode, R., Lavery, L., Walston, J., et al. (2004). Clinical global impression of change in physical frailty: Development of a measure based on clinical judgment. Journal of the American Geriatrics Society, 52(9), 1560–1566. https://doi.org/10.1111/j.1532-5415.2004.52423.x.

    Article  PubMed  Google Scholar 

  • The World Bank. (2013). World Development Indicators: Mortality. Table 2.21. http://wdi.worldbank.org/table/2.21.

  • Vijg, J. (2007). Aging of the genome: The dual role of DNA in life and death. Oxford University Press: New York.

    Google Scholar 

  • Walston, J. (2005). Biological markers and the molecular biology of frailty. In J.-M. Robine, J. R. Carey, Y. Christen, & J.-P. Michel (Eds.), Longevity and frailty (pp. 39–56). Paris: Springer-Verlag.

    Google Scholar 

  • Williams, G. C. (1957). Pleiotropy, natural selection, and the evolution of senescence. Evolution, 11, 398–411.

    Article  Google Scholar 

  • Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837–1847. https://doi.org/10.1161/01.CIR.97.18.1837.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas E. Crews .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Crews, D.E. (2019). Senescence. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_2356-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_2356-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics