Encyclopedia of Evolutionary Psychological Science

Living Edition
| Editors: Todd K. Shackelford, Viviana A. Weekes-Shackelford

Non-associative Learning

  • Androulla Ioannou
  • Xenia Anastassiou-HadjicharalambousEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-16999-6_1027-1



Non-associative learning is the simplest yet fundamental form of learning that does not require stimuli association or pairing. This means that animal species alter their response upon exposure to a single event or stimulus. Behavioral responses become attenuated or augmented after repeated or prolonged stimulation. Habituation and sensitization constitute the two major forms of non-associative learning and are opposite to each other in terms of the elicited responses upon continual presentation of the stimulus. In contrary, associative learning involves the presence of paired stimuli in order for change to occur. Naturally, it is suggested that non-associative learning likely came first in the hierarchy of evolutionary history, and then associative learning followed (Pereira and van der Kooy 2013).


The mechanisms underlying non-associative learning have received great attention from the earliest of times...

This is a preview of subscription content, log in to check access.


  1. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–369.CrossRefGoogle Scholar
  2. Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361(6407), 31.CrossRefGoogle Scholar
  3. Carew, J. T. (1984). An introduction to cellular approaches used in the analysis of habituation and sensitization in Aplysia. In H. Peeke (Ed.), Habituation, sensitization, and behavior (pp. 205–249). New York: Academic.CrossRefGoogle Scholar
  4. Castellucci, V., Pinsker, H., Kupfermann, I., & Kandel, E. R. (1970). Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science, 167(3926), 1745–1748.CrossRefGoogle Scholar
  5. Cooke, S. F., & Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129(7), 1659–1673.CrossRefGoogle Scholar
  6. Davis, M. (1970). Effects of interstimulus interval length and variability on startle-response habituation in the rat. Journal of Comparative and Physiological Psychology, 72(2), 177.CrossRefGoogle Scholar
  7. Dennison, Z., Teskey, G. C., & Cain, D. P. (1995). Persistence of kindling: Effect of partial kindling, retention interval, kindling site, and stimulation parameters. Epilepsy Research, 21(3), 171–182.CrossRefGoogle Scholar
  8. Eisenstein, E. M., Eisenstein, D., & Smith, J. C. (2001). The evolutionary significance of habituation and sensitization across phylogeny: A behavioral homeostasis model. Integrative Physiological & Behavioral Science, 36(4), 251–265.CrossRefGoogle Scholar
  9. Gagliano, M., Renton, M., Depczynski, M., & Mancuso, S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia, 175(1), 63–72.CrossRefGoogle Scholar
  10. Goddard, G. V. (1967). Development of epileptic seizures through brain stimulation at low intensity. Nature, 214(5092), 1020–1021.  https://doi.org/10.1038/2141020a0.CrossRefPubMedGoogle Scholar
  11. Groves, P. M., & Thompson, R. F. (1970). Habituation: A dual-process theory. Psychological Review, 77(5), 419–450.CrossRefGoogle Scholar
  12. Hinde, R. A. (1970). Behavioral habituation. In G. Horn & R. A. Hinde (Eds.), Short-term changes in neural activity and behavior. London/New York: Cambridge University Press.Google Scholar
  13. Leaton, R. N. (1976). Long-term retention of the habituation of lick suppression and startle response produced by a single auditory stimulus. Journal of Experimental Psychology: Animal Behavior Processes, 2(3), 248.PubMedGoogle Scholar
  14. Moroz, L. L. (2011). Aplysia. Current Biology, 21(2), R60–R61.  https://doi.org/10.1016/j.cub.2010.11.028.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Morris, R., Anderson, E., Lynch, G., & Baudry, M. (1986). Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature, 319, 774–776.  https://doi.org/10.1038/319774a0.CrossRefPubMedGoogle Scholar
  16. Pereira, S., & van der Kooy, D. (2013). Entwined engrams: The evolution of associative and non-associative learning. Worm, 2(2), 9035–9044.CrossRefGoogle Scholar
  17. Petrinovich, L. (1984). A two-factor dual-process theory of habituation and sensitization. In H. Peeke (Ed.), Habituation, sensitization, and behavior (pp. 17–55). New York: Academic.CrossRefGoogle Scholar
  18. Petrinovich, L., & Widaman, F. K. (1984). An evaluation of statistical strategies to analyze repeated-measures data. In H. Peeke (Ed.), Habituation, sensitization, and behavior (pp. 156–200). New York: Academic.Google Scholar
  19. Pinsker, H. M., Hening, W. A., Carew, T. J., & Kandel, E. R. (1973). Long-term sensitization of a defensive withdrawal reflex in Aplysia. Science, 182(4116), 1039–1042.CrossRefGoogle Scholar
  20. Post, R. M. (2007). Kindling and sensitization as models for affective episode recurrence, cyclicity, and tolerance phenomena. Neuroscience & Biobehavioral Reviews, 31(6), 858–873.CrossRefGoogle Scholar
  21. Racine, R. (1978). Kindling: The first decade. Neurosurgery, 3(2), 234–252.CrossRefGoogle Scholar
  22. Rankin, C. H., & Broster, B. S. (1992). Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behavioral Neuroscience, 106(2), 239.CrossRefGoogle Scholar
  23. Rankin, C. H., Abrams, T., Barry, R. J., Bhatnager, S., Clayton, D. F., Colombo, J., Coppola, G., Geyer, M. A., Glanzman, D. L., Marsland, S., McSweeney, F. K., Wilson, D. A., Chun-Fang, W., & Thompson, R. F. (2009). Habituation revisited: An updated and revised description of the behavioural characteristics of habituation. Neurobiology of Learning and Memory, 92(2), 135–138.CrossRefGoogle Scholar
  24. Robinson, T. E., & Berridge, K. C. (2008). The incentive sensitization theory of addiction: Some current issues. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1507), 3137–3146.CrossRefGoogle Scholar
  25. Sokolov, E. N. (1960). Neuronal models and the orienting influence. In M. A. Brazier (Ed.), The central nervous system and behavior: III (pp. 187–275). New York: Macy Foundation.Google Scholar
  26. Steketee, J. D., & Kalivas, P. W. (2011). Drug wanting: Behavioral sensitization and relapse to drug-seeking behavior. Pharmacological Reviews, 63(2), 348–365.CrossRefGoogle Scholar
  27. Teyler, T. J., Chiaia, N., DiScenna, P., & Roemer, R. A. (1984). Habituation of central nervous system evoked potentials: Intrinsic habituation examined in neocortex, allocortex, and mesencephalon. In H. Peeke (Ed.), Habituation, sensitization, and behavior (pp. 251–283). New York: Academic.CrossRefGoogle Scholar
  28. The Official Website of the Nobel Prize. (2018). https://www.nobelprize.org/nobel_prizes/medicine/laureates/2000/kandel-bio.html. Accessed 22 Jan 2018.
  29. Thompson, R. F. (2009). Habituation: A history. Neurobiology of Learning and Memory, 92(2), 127.CrossRefGoogle Scholar
  30. Thompson, R. F., & Spencer, W. A. (1966). Habituation: A model phenomenon for the study of neuronal substrates of behavior. Psychological Review, 73, 16–43.CrossRefGoogle Scholar
  31. Wagner, A. R. (1979). Habituation and memory. In A. Dickinson & R. A. Boakes (Eds.). Mechanisms of learning and motivation: A memorial volume for Jerzy Konorski (pp. 53–82). Hillsdale, N.J.: Lawrence Erlbaum Associates.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Androulla Ioannou
    • 1
  • Xenia Anastassiou-Hadjicharalambous
    • 1
    Email author
  1. 1.University of NicosiaNicosiaCyprus

Section editors and affiliations

  • Menelaos Apostolou
    • 1
  1. 1.University of NicosiaNicosiaCyprus