Skip to main content

Bioactivity of Chitosan Derivatives

  • Reference work entry
  • First Online:
Polysaccharides

Abstract

Chitosan, a natural-based polymer obtained by alkaline deacetylation of chitin, is composed of glucosamine and N-acetylglucosamine monomers. Chitosan and its derivatives have a great potential for a wide range of applications in biomedical, pharmaceutical, food, cosmetics, and environmental fields due to its biodegradability, biocompatibility, nontoxicity, and versatile chemical and physical properties. For a breakthrough in utilization, especially in the biomedical field, chemical modification of chitosan will be a key point that can introduce desired properties and enlarge the field of the potential applications of chitosan. Different approaches have been reported to prepare chitosan derivatives and chitosan oligomers with low, medium, and high molecular weights. In this chapter, the properties such as biodegradation, antimicrobial activity, anti-inflammatory and tissue regeneration activity, wound-healing properties, antioxidant activity, and antitumor activity of chitosan and its derivatives are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvarez MV, Ponce AG, Moreira MR (2013) Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT Food Sci Technol 50:78–87

    Article  CAS  Google Scholar 

  • Anusuya S, Sathiyabama M (2013) Identification of defense proteins from the seed exudates of Cicer arietinum L. and its effect on the growth of Fusarium oxysporum f.sp. Ciceri. Arch Phytopathol Plant Protect 2013:1–10

    Google Scholar 

  • Avadi MR, Sadeghi AMM, Tahzibi A, Bayati KH, Pouladzadeh M, Zohuriaan-Mehr MJ (2004) Diethylmethyl chitosan as an antimicrobial agent: synthesis, characterization and antibacterial effects. Eur Polym J 40:1355–1362

    Article  CAS  Google Scholar 

  • Badawy MEI (2010) Structure and antimicrobial activity relationship of quaternary N-alkyl chitosan derivatives against some plant pathogens. J Appl Polym Sci 117:960–969

    Article  CAS  Google Scholar 

  • Badawy MEI, Rabea EI (2011) A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection. Int J Carbohyd Chem 2011:1–29

    Article  Google Scholar 

  • Badawy MEI, Ahmed SM, Rabea EI (2006) Bactericidal and fungicidal activities of different molecular weight chitosan samples. J Pest Cont Env Sci 14:19–34

    Google Scholar 

  • Channasanon S, Graisuwan W, Kiatkamjornwong S, Hoven VP (2007) Alternating bioactivity of multilayer thin films assembled from charged derivatives of chitosan. J Colloid Interface Sci 316:331–343

    Article  CAS  Google Scholar 

  • Chen Z, Mo X, He C, Wang H (2008) Intermolecular interactions in electrospun collagen-chitosan complex nanofibers. Carbohydr Polym 72:410–418

    Article  CAS  Google Scholar 

  • Chittenden C, Singh T (2009) In vitro evaluation of combination of Trichoderma harzianum and chitosan for the control of sapstain fungi. Biol Control 50:262–266

    Article  Google Scholar 

  • Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JCG, Lin JG (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin 25(7):932–936

    CAS  Google Scholar 

  • Chung MJ, Park JK, Park YI (2012) Anti-inflammatory effects of low-molecular weight chitosan oligosaccharides in IgE-antigen complex-stimulated RBL-2H3 cells and asthma model mice. Int Immunopharmacol 12:453–459

    Article  CAS  Google Scholar 

  • Costa Silva HSR, Santos KSCR, Ferreira EI (2006) Quitosana: derivados hidrossolúveis, aplicações farmacêuticas e avanços. Quím Nova 29(4):776–785

    Article  Google Scholar 

  • Costa-Pinto AR, Martins AM, Castelhano-Carlos MJ, Correlo VM, Sol PC, Longatto-Filho A, Battacharya M, Reis RL, Neves NM (2014) In vitro degradation and in vivo biocompatibility of chitosan-poly(butylene succinate) fiber mesh scaffolds. J Bioact Compat Polym 29:137–151

    Article  CAS  Google Scholar 

  • Dai T, Tanaka M, Huang YY, Hamblin MR (2011) Chitosan preparations for wounds and burns: antimicrobial and wound –healing effects. Expert Rev Anti Infect Ther 9(7):857–879

    Article  CAS  Google Scholar 

  • Ghaouth EA, Arul J, Asselin A, Benhamou N (1992) Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology 82:398–402

    Article  Google Scholar 

  • Goy RC, Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polím Ciência Tecnol 19(3):241–247

    Article  CAS  Google Scholar 

  • Guminska M, Ignacak J, Wojcik E (1996) In vitro inhibitory effect of chitosan and its degradation products on energy metabolism in Ehrlich ascites tumour cells (EAT). Pol J Pharmacol 48:495–501

    CAS  Google Scholar 

  • Hadwiger LA (1999) Host-parasite interactions: elicitation of defense responses in plants with chitosan. In: Jolles P, Muzzarelli RAA (eds) Chitin and chitinases. Brikhauser, Germany, pp 185–200

    Chapter  Google Scholar 

  • Hirano S, Nagao N (1989) Effects of chitosan, pectic acid, lysozyme, and chitinase on the growth of several phytopathogens. Agric Biol Chem 53:3065–3066

    Article  CAS  Google Scholar 

  • Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ (2002) The effect of chitin and chitosan on fibroblast-populated collagen lattice contraction. Biotechnol Appl Biochem 36:247–253

    Article  CAS  Google Scholar 

  • Huang RH, Mendis E, Rajapakse N, Kim SK (2006) Strong electronic charge as an important factor for anticancer activity of chitooligosaccharides (COS). Life Sci 78(20):2399–2408

    Article  CAS  Google Scholar 

  • Hurt AP, Getti G, Coleman NJ (2014) Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration. Int J Biol Macromol 64:11–16

    Article  CAS  Google Scholar 

  • Ignacak A, Guminska M, Kedryna T, Struszczyk H (1998) Progress on chemistry and application of chitin and its derivatives. Lodz 4:703–112

    Google Scholar 

  • Ikinci G, Senel S, Akincibay H, Kas S, Ercis S, Wilson CG, Hincal AA (2002) Effect of chitosan on a periodontal pathogen Porphyromonas gingivalis. Int J Pharm 235:121–127

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan-present status and applications. Carbohydr Polym 62:142–158

    Article  CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337

    Article  CAS  Google Scholar 

  • Je JY, Park PJ, Kim SK (2004a) Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food Chem Toxicol 42:381–387

    Article  CAS  Google Scholar 

  • Je JY, Park PJ, Kim SK (2004b) Radical scavenging activity of hetero-chitooligosaccharides. Eur Food Res Technol 219:60–65

    Article  CAS  Google Scholar 

  • Jena P, Mohanty S, Mallick R, Jacob B, Sonawane A (2012) Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int J Nanomedicine 7:1805–1818

    CAS  Google Scholar 

  • Jeon SJ, Oh M, Yeo WS, Galvao KN, Jeong KC (2014) Underlying mechanism of antimicrobial activity of chitosan microparticles and implications for the treatment of infectious diseases. PLoS ONE 9:e92723

    Article  Google Scholar 

  • Kato Y, Onishi H, Machida Y (2005) Contribution of chitosan and its derivatives to cancer chemotherapy. In Vivo 19(1):301–310

    CAS  Google Scholar 

  • Kim MO, Moon DO, Kang CH, Choi YH, Lee JD, Kim GY (2013) Water-soluble chitosan sensitizes apoptosis in human leukemia cells via the down regulation of bcl-2 and dephosphorylation of akt. J Food Biochem 37:270–277

    Article  CAS  Google Scholar 

  • Kobayashi S, Kiyosada T, Shoda S (1997) A novel method for synthesis of chitobiose via enzymatic glycosylation using a sugar oxazoline as glycosyl donor. Tetrahedron Lett 38:2111–2112

    Article  CAS  Google Scholar 

  • Kochkina ZM, Pospieszny H, Chrkov SN (1995) Inhibition by chitosan of productive infection of the T-series bacteriophages in an Escherichia coli culture. Microbiology 64:173–176

    Google Scholar 

  • Laffleur F, Hintzen F, Rahmat D, Shahnaz G, Millotti G, Bernkop-Schnürch A (2013) Enzymatic degradation of thiolated chitosan. Drug Dev Ind Pharm 39:1531–1539

    Article  CAS  Google Scholar 

  • Lee DS, Woo JY, Ahn CB, Je JY (2014) Chitosan-hydroxycinnamic acid conjugates: preparations, antioxidant and antimicrobial activity. Food Chem 148:97–104

    Article  CAS  Google Scholar 

  • Li P, Poon YF, Li W (2011) A polycationic antimicrobial and biocompatible hydrogel with microbe membrane suctioning ability. Nat Mater 10(2):149–156

    Article  CAS  Google Scholar 

  • Li H, Xu Q, Chen Y, Wan A (2014) Effect of concentration and molecular weight of chitosan and its derivative on the free radical scavenging ability. J Biomed Mater Res A 102:911–916

    Article  Google Scholar 

  • Liu JN (2008) Study on the hypolipidemic mechanism of chitosan. Doctor dissertation, Jiangnan University, Wuxi

    Google Scholar 

  • Liu X, Du YG, Bai XF (2001) Relieving effects of oligoglucosamine on the inhibition induced by deoxynivalenol in wheat embryo cells. Acta Bot Sin 43:370–374

    CAS  Google Scholar 

  • Liu BS, Yao CH, Fang SS (2008) Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing. Macromol Biosci 8:432–440

    Article  CAS  Google Scholar 

  • Meng X, Yang L, Kennedy JF, Tian S (2010) Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydr Polym 81:70–75

    Article  CAS  Google Scholar 

  • Muzzarelli RAA, Muzzarelli C, Tarsi R, Miliani M, Gabbanelli F, Cartolari M (2001) Fungistatic activity of modified chitosans against Saprolegnia parasitica. Biomacromolecules 2:165–169

    Article  CAS  Google Scholar 

  • Ngo DN, Kim MM, Kim SK (2008) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohydr Polym 74(2):228–234

    Article  CAS  Google Scholar 

  • Okamoto Y, Inooue A, Miyatake K, Ogihara K, Shigemasa Y, Minami S (2003) Effects of chitin/chitosan and their oligomers/monomers on migrations of macrophages. Macromol Biosci 3:587–590

    Article  CAS  Google Scholar 

  • Olivier B, Karel P, Lucio R, Rita D, Gatterova MO (2004) Glucosamine sulfate reduces osteoarthritis progression in postmenopausal women with knee osteoarthritis: evidence from two 3-year studies. Menopause 11(2):138–143

    Article  Google Scholar 

  • Overdijk B, Van Steijn GJ, Odds FC (1996) Chitinase levels in guinea pig blood are increased after systemic infection with Aspergillus fumigatus. Glycobiology 6(6):627–34

    Article  CAS  Google Scholar 

  • Park PJ, Je JY, Kim SK (2003) Free radical scavenging activity of chitooligosaccharides by electron spin resonance spectrometry. J Agric Food Chem 51:4624–4627

    Article  CAS  Google Scholar 

  • Pedro AS, Cabral-Albuquerque E, Ferreira D, Sarmento B (2009) Chitosan: an option for development of essential oil delivery systems for oral cavity care? Carbohydr Polym 76:501–508

    Article  CAS  Google Scholar 

  • Prabaharan M, Mano JF (2005a) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12(1):41–57

    Article  CAS  Google Scholar 

  • Prabaharan M, Mano JF (2005b) Hydroxypropyl chitosan bearing β-cyclodextrin cavities: synthesis and slow release of its inclusion complex with a model hydrophobic drug. Macromol Biosci 5:965–973

    Article  CAS  Google Scholar 

  • Prabaharan M, Mano JF (2007) Synthesis and characterization of chitosan-graft-poly (3-(trimethoxysilyl)propyl methacrylate) initiated by ceric (IV) ion. J Macromol Sci A Pure Appl Chem 44(5):489–494

    Article  CAS  Google Scholar 

  • Prabaharan M, Rajkumar M, Jayakumar R (2007) Chitosan and its derivatives: promising materials for textile finishing. Asian Chitin J 3:1–14

    Google Scholar 

  • Prabaharan M, Grailer JJ, Steeber DA, Gong S (2008) Stimuli-responsive chitosan-graft-poly(N-vinylcaprolactam) as a promising material for controlled hydrophobic drug delivery. Macromol Biosci 8(9):843–851

    Article  CAS  Google Scholar 

  • Razdan A, Pettersson D, Pettersson J (1997) Broiler chicken body weights, feed intakes, plasma lipid and small-intestinal bile acid concentrations in response to feeding of chitosan and pectin. Br J Nutr 78:283–291

    Article  CAS  Google Scholar 

  • Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N (2013) Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 52:333–339

    Article  CAS  Google Scholar 

  • Santos IS, Oliveira AE, Da Cunha M, Machado OL, Neves-Ferreira AG, Fernandes KV, Carvalho AO, Perales J, Gomes VM (2007) Expression of chitinase in Adenanthera pavonina seedlings. Physiol Plant 131(1):80–88

    Article  CAS  Google Scholar 

  • Senel S, Ikinci G, Kas S, Yousefirad A, Sargon M, Hincal AA (2000) Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. Int J Pharm 5(2):197–203

    Article  Google Scholar 

  • Struszczyk MH (2002) Chitin and chitosan-part III. Some aspects of biodegradation and bioactivity. Polimery 47(9):619–629

    CAS  Google Scholar 

  • Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408

    Article  CAS  Google Scholar 

  • Taghizadeh MT, Bahadori A (2014) Ultrasonic degradation of N-di and trihydroxy benzoyl chitosans and its effects on antioxidant activity. Ultrason Sonochem 21:1140–1149

    Article  CAS  Google Scholar 

  • Tokura S, Nishi N, Nishimura S, Ikeuchi Y, Azuma I, Nishimura K (1984) Chitin, chitosan and related enzymes. Academic, New York

    Google Scholar 

  • Tsigos I, Martinou A, Kafetzopoulos D, Bouriotis V (2000) Chitin deacetylases: new, versatile tools in biotechnology. Trends Biotechnol 18:305–312

    Article  CAS  Google Scholar 

  • Wang CC, Su CH, Chen CC (2008) Water absorbing and antibacterial properties of N-isopropyl acrylamide grafted and collagen/chitosan immobilized polypropylene nonwoven fabric and its application on wound healing enhancement. J Biomed Mater Res A 84:1006–1017

    Article  Google Scholar 

  • Wu J, Zhao Q, Liang C, Xie T (2013) Enzymatically degradable oxidized dextran-chitosan hydrogels with an anisotropic aligned porous structure. Soft Matter 9:11136–11142

    Article  CAS  Google Scholar 

  • Xu J, Zhao X, Han X, Du Y (2007) Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pestic Biochem Physiol 87:220–228

    Article  CAS  Google Scholar 

  • Yang TC, Chou CC, Li CF (2005) Antibacterial activity of N-alkylated disaccharide chitosan derivatives. Int J Food Microbiol 97:237–245

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mani Prabaharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Prabaharan, M. (2015). Bioactivity of Chitosan Derivatives. In: Ramawat, K., Mérillon, JM. (eds) Polysaccharides. Springer, Cham. https://doi.org/10.1007/978-3-319-16298-0_17

Download citation

Publish with us

Policies and ethics