Skip to main content

Cardiovascular Deconditioning and Exercise

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Bioastronautics

Abstract

The cardiovascular system in the human body has evolved to support function in the Earth’s gravity environment involving bipedal stance and ambulation. Given that blood and body fluids are drawn downward during standing, autonomic, endocrine, and vascular responses are critical to returning blood from the lower body to the heart and perfuse the brain. Many of these functions are not required during spaceflight, and, in combination with altered blood flow and pressures, results in cardiovascular deconditioning. When not opposed by countermeasures performed during spaceflight to simulate physical work or gravity on Earth, cardiovascular deconditioning can result in low blood volume, cardiac atrophy, vascular dysfunction, orthostatic intolerance, and reduced work capacity, affecting an astronaut’s ability to perform work during and immediately after spaceflight.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdullah S, Hastings J, Shibata S et al (2013) Effects of prolonged space flight on cardiac structure and function (abstract). Circulation 128:A18672

    Google Scholar 

  • Adams GR, Caiozzo VJ, Baldwin KM (2003) Skeletal muscle unweighting: spaceflight and ground-based models. J Appl Physiol 95:2185–2201. https://doi.org/10.1152/japplphysiol.00346.2003

    Article  Google Scholar 

  • Ade CJ, Broxterman RM, Barstow TJ (2015) VO(2max) and microgravity exposure: convective versus diffusive O(2) transport. Med Sci Sports Exerc 47:1351–1361. https://doi.org/10.1249/MSS.0000000000000557

    Article  Google Scholar 

  • Ahmadi N, Tsimikas S, Hajsadeghi F et al (2010) Relation of oxidative biomarkers, vascular dysfunction, and progression of coronary artery calcium. Am J Cardiol 105:459–466. https://doi.org/10.1016/j.amjcard.2009.09.052

    Article  Google Scholar 

  • Alfrey CP, Udden MM, Leach-Huntoon C et al (1996) Control of red blood cell mass in spaceflight. J Appl Physiol 81:98–104

    Google Scholar 

  • Alkner BA, Tesch PA (2004) Knee extensor and plantar flexor muscle size and function following 90 days of bed rest with or without resistance exercise. Eur J Appl Physiol 93:294–305. https://doi.org/10.1007/s00421-004-1172-8

    Article  Google Scholar 

  • Arbeille P, Fomina G, Roumy J et al (2001) Adaptation of the left heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-down tilt and spaceflights. Eur J Appl Physiol 86:157–168

    Google Scholar 

  • Arbeille P, Kerbeci P, Mattar L et al (2008) Insufficient flow reduction during LBNP in both splanchnic and lower limb areas is associated with orthostatic intolerance after bedrest. Am J Physiol Heart Circ Physiol 295:H1846–H1854. https://doi.org/10.1152/ajpheart.509.2008

    Article  Google Scholar 

  • Atkov OY, Bednenko VS, Fomina GA (1987) Ultrasound techniques in space medicine. Aviat Space Environ Med 58:A69–A73

    Google Scholar 

  • Bishop PA, Lee SM, Conza NE et al (1999) Carbon dioxide accumulation, walking performance, and metabolic cost in the NASA launch and entry suit. Aviat Space Environ Med 70:656–665

    Google Scholar 

  • Blaber AP, Goswami N, Bondar RL, Kassam MS (2011) Impairment of cerebral blood flow regulation in astronauts with orthostatic intolerance after flight. Stroke 42:1844–1850. https://doi.org/10.1161/STROKEAHA.110.610576

    Article  Google Scholar 

  • Blaber AP, Zuj KA, Goswami N (2013) Cerebrovascular autoregulation: lessons learned from spaceflight research. Eur J Appl Physiol 113:1909–1917. https://doi.org/10.1007/s00421-012-2539-x

    Article  Google Scholar 

  • Buckey JC Jr, Gaffney FA, Lane LD et al (1996a) Central venous pressure in space. J Appl Physiol 81:19–25

    Google Scholar 

  • Buckey JC Jr, Lane LD, Levine BD et al (1996b) Orthostatic intolerance after spaceflight. J Appl Physiol 81:7–18

    Google Scholar 

  • Bungo MW, Charles JB, Johnson PC Jr (1985) Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med 56:985–990

    Google Scholar 

  • Bungo MW, Goldwater DJ, Popp RL, Sandler H (1987) Echocardiographic evaluation of space shuttle crewmembers. J Appl Physiol 62:278–283

    Google Scholar 

  • Capelli C, Antonutto G, Kenfack MA et al (2006) Factors determining the time course of VO2(max) decay during bedrest: implications for VO2(max) limitation. Eur J Appl Physiol 98:152–160. https://doi.org/10.1007/s00421-006-0252-3

    Article  Google Scholar 

  • Carrick-Ranson G, Hastings JL, Bhella PS et al (2013) The effect of exercise training on left ventricular relaxation and diastolic suction at rest and during orthostatic stress after bed rest. Exp Physiol 98:501–513. https://doi.org/10.1113/expphysiol.2012.067488

    Article  Google Scholar 

  • Charles JB, Campbell MR, Stenger MB, Lee SMC (2014) Standing without gravity: the use of lower body negative pressure for research and reconditioning during spaceflight. Aviat Space Environ Med 85(3):238, 2014. (85th Annual Meeting of the Aerospace Medical Association, San Diego, 11–15 May 2014)

    Google Scholar 

  • Convertino VA (1996) Exercise and adaptation to microgravity environments. In: Fregly MJ, Blatteis CM (eds) Section 4: environmental physiology. Oxford University Press, New York, pp 815–844

    Google Scholar 

  • Cox JF, Tahvanainen KUO, Kuusela TA et al (2002) Influence of microgravity on astronauts’ sympathetic and vagal responses to Valsalva’s manoeuvre. J Physiol 538:309–320

    Google Scholar 

  • Coyle EF (1999) Physiological determinants of endurance exercise performance. J Sci Med Sport 2:181–189

    Google Scholar 

  • Cucinotta FA (2014) Space radiation risks for astronauts on multiple International Space Station missions. PLoS One 9:e96099. https://doi.org/10.1371/journal.pone.0096099

    Article  Google Scholar 

  • Cucinotta FA, Kim M-HY, Chappell LJ, Huff JL (2013) How safe is safe enough? Radiation risk for a human mission to Mars. PLoS One 8:e74988. https://doi.org/10.1371/journal.pone.0074988

    Article  Google Scholar 

  • Dorfman TA, Levine BD, Tillery T et al (2007) Cardiac atrophy in women following bed rest. J Appl Physiol 103:8–16. https://doi.org/10.1152/japplphysiol.01162.2006

    Article  Google Scholar 

  • Dorfman TA, Rosen BD, Perhonen MA et al (2008) Diastolic suction is impaired by bed rest: MRI tagging studies of diastolic untwisting. J Appl Physiol 104:1037–1044. https://doi.org/10.1152/japplphysiol.00858.2006

    Article  Google Scholar 

  • Ertl AC, Diedrich A, Biaggioni I et al (2002) Human muscle sympathetic nerve activity and plasma noradrenaline kinetics in space. J Physiol 538:321–329

    Google Scholar 

  • Evans JM, Stenger MB, Moore FB et al (2004) Centrifuge training increases presyncopal orthostatic tolerance in ambulatory men. Aviat Space Environ Med 75:850–858

    Google Scholar 

  • Evans J, Ribeiro LC, Moore F et al (2015) Hypovolemic men and women regulate blood pressure differently following exposure to artificial gravity. Eur J Appl Physiol 115(12):2631–2640

    Google Scholar 

  • Foldager N, Andersen TA, Jessen FB et al (1996) Central venous pressure in humans during microgravity. J Appl Physiol 81:408–412

    Article  Google Scholar 

  • Fortney SM, Mikhaylov V, Lee SM et al (1998) Body temperature and thermoregulation during submaximal exercise after 115-day spaceflight. Aviat Space Environ Med 69:137–141

    Google Scholar 

  • Fritsch-Yelle JM, Charles JB, Jones MM et al (1994) Spaceflight alters autonomic regulation of arterial pressure in humans. J Appl Physiol 77:1776–1783

    Article  Google Scholar 

  • Gaffney FA, Nixon JV, Karlsson ES et al (1985) Cardiovascular deconditioning produced by 20 hours of bedrest with head-down tilt (−5 degrees) in middle-aged healthy men. Am J Cardiol 56:634–638

    Article  Google Scholar 

  • Guinet P, Schneider SM, Macias BR et al (2009) WISE-2005: effect of aerobic and resistive exercises on orthostatic tolerance during 60 days bed rest in women. Eur J Appl Physiol 106:217–227. https://doi.org/10.1007/s00421-009-1009-6

    Article  Google Scholar 

  • Hargens AR, Groppo ER, Lee SMC et al (2002) The gravity of LBNP exercise: preliminary lessons learned from identical twins in bed for 30 days. J Gravit Physiol 9:P59–P62

    Google Scholar 

  • Harm DL, Jennings RT, Meck JV et al (2001) Invited review: gender issues related to spaceflight: a NASA perspective. J Appl Physiol 91:2374–2383

    Article  Google Scholar 

  • Hastings JL, Krainski F, Snell PG et al (2012) Effect of rowing ergometry and oral volume loading on cardiovascular structure and function during bed rest. J Appl Physiol 112:1735–1743. https://doi.org/10.1152/japplphysiol.00019.2012

    Article  Google Scholar 

  • Hayes JC, Guilliams ME, Lee SMC et al (2013) Exercise: developing countermeasure systems for optimizing astronaut performance in space. In: Risin D, Stepaniak PC (eds) Biomedical results of the Space Shuttle Program, NASA/SP-2013-607. US Government Printing Office, Washington, DC, pp 289–314

    Google Scholar 

  • Henry W, Epstein SE, Griffith JM et al (1977) Effect of prolonged space flight on cardiac function and dimensions. Biomedical results from Skylab. Scientific and Technical Information Office, National Aeronautics and Space Administration: for sale by the Supt. of Docs., U.S. Govt. Print. Off, Washington, DC, pp 366–371

    Google Scholar 

  • Hoffler GW, Johnson RL (1975) Apollo flight crew cardiovascular evaluations. Biomedical results of Apollo. Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington, DC, pp 227–264

    Google Scholar 

  • Hyatt KH, West DA (1977) Reversal of bedrest-induced orthostatic intolerance by lower body negative pressure and saline. Aviat Space Environ Med 48:120–124

    Google Scholar 

  • Iwasaki KI, Sasaki T, Hirayanagi K, Yajima K (2001) Usefulness of daily +2Gz load as a countermeasure against physiological problems during weightlessness. Acta Astronaut 49:227–235

    Google Scholar 

  • Iwasaki K, Levine BD, Zhang R et al (2007) Human cerebral autoregulation before, during and after spaceflight. J Physiol 579:799–810. https://doi.org/10.1113/jphysiol.2006.119636

    Article  Google Scholar 

  • Jeong S-M, Shibata S, Levine BD, Zhang R (2012) Exercise plus volume loading prevents orthostatic intolerance but not reduction in cerebral blood flow velocity after bed rest. Am J Physiol Heart Circ Physiol 302:H489–H497. https://doi.org/10.1152/ajpheart.00427.2011

    Article  Google Scholar 

  • Johnson RL, Hoffler GW, Nicogossian AE et al (1977) Lower body negative pressure: third manned Skylab mission. Biomedical results from Skylab. Scientific and Technical Information Office, National Aeronautics and Space Administration: for sale by the Supt. of Docs., U.S. Govt. Print. Off, Washington, DC, pp 284–312

    Google Scholar 

  • Katayama K, Sato K, Akima H et al (2004) Acceleration with exercise during head-down bed rest preserves upright exercise responses. Aviat Space Environ Med 75:1029–1035

    Google Scholar 

  • Kozlovskaya IB, Grigoriev AI (2004) Russian system of countermeasures on board of the International Space Station (ISS): the first results. Acta Astronaut 55:233–237

    Google Scholar 

  • Kozlovskaya IB, Grigoriev AI, Stepantzov VI (1995) Countermeasure of the negative effects of weightlessness on physical systems in long-term space flights. Acta Astronaut 36:661–668

    Article  Google Scholar 

  • Kozlovskaya I, Pestov I, Egorov A (2010) The system of preventive measures in long space flights. Hum Physiol 36:773–779. https://doi.org/10.1134/S0362119710070066

    Article  Google Scholar 

  • Lassen NA (1959) Cerebral blood flow and oxygen consumption in man. Physiol Rev 39:183–238

    Google Scholar 

  • Leach CS, Leonard JI, Rambaut PC, Johnson PC (1978) Evaporative water loss in man in a gravity-free environment. J Appl Physiol 45:430–436

    Google Scholar 

  • Leach CS, Alfrey CP, Suki WN et al (1996) Regulation of body fluid compartments during short-term spaceflight. J Appl Physiol 81:105–116

    Google Scholar 

  • Lee SM, Bennett BS, Hargens AR et al (1997) Upright exercise or supine lower body negative pressure exercise maintains exercise responses after bed rest. Med Sci Sports Exerc 29:892–900

    Google Scholar 

  • Lee SM, Moore AD, Fritsch-Yelle JM et al (1999) Inflight exercise affects stand test responses after space flight. Med Sci Sports Exerc 31:1755–1762

    Google Scholar 

  • Lee SMC, Schneider SM, Boda WL et al (2007) Supine LBNP exercise maintains exercise capacity in male twins during 30-d bed rest. Med Sci Sports Exerc 39:1315–1326. https://doi.org/10.1249/mss.0b013e31806463d9

    Article  Google Scholar 

  • Lee SMC, Moore AD, Everett ME et al (2010) Aerobic exercise deconditioning and countermeasures during bed rest. Aviat Space Environ Med 81:52–63

    Google Scholar 

  • Lee SMC, Feiveson AH, Stein SP et al (2015) Orthostatic intolerance after International Space Station and Space Shuttle missions. Aerosp Med Hum Perform 86(12 Suppl):A54–A67

    Google Scholar 

  • Levine BD, Lane LD, Watenpaugh DE et al (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81:686–694

    Google Scholar 

  • Levine BD, Zuckerman JH, Pawelczyk JA (1997) Cardiac atrophy after bed-rest deconditioning: a nonneural mechanism for orthostatic intolerance. Circulation 96:517–525

    Google Scholar 

  • Levine BD, Pawelczyk JA, Ertl AC et al (2002) Human muscle sympathetic neural and haemodynamic responses to tilt following spaceflight. J Physiol 538:331–340

    Google Scholar 

  • Loehr JA, Lee SMC, English KL et al (2011) Musculoskeletal adaptations to training with the advanced resistive exercise device. Med Sci Sports Exerc 43:146–156. https://doi.org/10.1249/MSS.0b013e3181e4f161

    Article  Google Scholar 

  • Loehr JA, Guilliams ME, Petersen N et al (2015) Physical training for long-duration spaceflight. Aerosp Med Hum Perform 86(12 Suppl):A14–A23

    Google Scholar 

  • Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38. https://doi.org/10.1161/01.ATV.0000150649.39934.13

    Article  Google Scholar 

  • Mandsager KT, Robertson D, Diedrich A (2015) The function of the autonomic nervous system during spaceflight. Clin Auton Res 25:141–151. https://doi.org/10.1007/s10286-015-0285-y

    Article  Google Scholar 

  • Martin DS, South DA, Wood ML et al (2002) Comparison of echocardiographic changes after short- and long-duration spaceflight. Aviat Space Environ Med 73:532–536

    Google Scholar 

  • Meck JV, Reyes CJ, Perez SA et al (2001) Marked exacerbation of orthostatic intolerance after long- vs. short-duration spaceflight in veteran astronauts. Psychosom Med 63:865–873

    Google Scholar 

  • Moore AD Jr, Lee SM, Charles JB et al (2001) Maximal exercise as a countermeasure to orthostatic intolerance after spaceflight. Med Sci Sports Exerc 33:75–80

    Google Scholar 

  • Moore AD, Lee SMC, Stenger MB, Platts SH (2010) Cardiovascular exercise in the U.S. space program: past, present and future. Acta Astronaut 66:974–988. https://doi.org/10.1016/j.actaastro.2009.10.009

    Article  Google Scholar 

  • Moore AD, Downs ME, Lee SMC et al (2014) Peak exercise oxygen uptake during and following long-duration spaceflight. J Appl Physiol 117:231–238. https://doi.org/10.1152/japplphysiol.01251.2013

    Article  Google Scholar 

  • Moore AD Jr, Lynn P, Feiveson AH (2015) Aerobic exercise responses to long-duration International Space Station flights – first 10 years. Aerosp Med Hum Perform 86(12 Suppl):A78–A86

    Google Scholar 

  • Nicogossian A, Hoffler GW, Johnson RL, Gowen RJ (1976) Determination of cardiac size following space missions of different durations: the second manned Skylab mission. Aviat Space Environ Med 47:362–365

    Google Scholar 

  • Nixon JV, Murray RG, Bryant C et al (1979) Early cardiovascular adaptation to simulated zero gravity. J Appl Physiol 46:541–548

    Google Scholar 

  • Norsk P, Damgaard M, Petersen L et al (2006) Vasorelaxation in space. Hypertension 47:69–73. https://doi.org/10.1161/01.HYP.0000194332.98674.57

    Article  Google Scholar 

  • Norsk P, Asmar A, Damgaard M, Christensen NJ (2015) Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol 593:573–584

    Google Scholar 

  • Perez SA, Charles JB, Fortner GW et al (2003) Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat Space Environ Med 74:753–757

    Google Scholar 

  • Perhonen MA, Franco F, Lane LD et al (2001a) Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 91:645–653

    Google Scholar 

  • Perhonen MA, Zuckerman JH, Levine BD (2001b) Deterioration of left ventricular chamber performance after bed rest: “cardiovascular deconditioning” or hypovolemia? Circulation 103:1851–1857

    Google Scholar 

  • Pettit D (2010) Mars landing on Earth: an astronaut’s perspective. J Cosmol 12:3529–3536

    Google Scholar 

  • Platts SH, Martin DS, Stenger MB et al (2009a) Cardiovascular adaptations to long-duration head-down bed rest. Aviat Space Environ Med 80:A29–A36

    Google Scholar 

  • Platts SH, Tuxhorn JA, Ribeiro LC et al (2009b) Compression garments as countermeasures to orthostatic intolerance. Aviat Space Environ Med 80:437–442

    Google Scholar 

  • Popov DV, Khusnutdinova DR, Shenkman BS et al (2004) Dynamics of physical performance during long-duration space flight (first results of “countermeasure” experiment). J Gravit Physiol 11:P231–P232

    Google Scholar 

  • Rimmer D, Djik D, Rhonda J et al (1999) Efficacy of liquid cooling garments to minimize heat strain during Space Shuttle deorbit and landing. Med Sci Sports Exerc 31:S305

    Google Scholar 

  • Sawin CF, Taylor GR, Smith WL (eds) (1999) Extended duration orbiter medical project final report, 1989–1995, NASA/SP-1999-534. National Aeronautics and Space Administration, Houston

    Google Scholar 

  • Schneider SM, Watenpaugh DE, Lee SMC et al (2002) Lower-body negative-pressure exercise and bed-rest-mediated orthostatic intolerance. Med Sci Sports Exerc 34:1446–1453. https://doi.org/10.1249/01.MSS.0000027761.31366.06

    Article  Google Scholar 

  • Schneider SM, Lee SMC, Macias BR et al (2009) WISE-2005: exercise and nutrition countermeasures for upright VO2pk during bed rest. Med Sci Sports Exerc 41:2165–2176. https://doi.org/10.1249/MSS.0b013e3181aa04e5

    Article  Google Scholar 

  • Shibata S, Perhonen M, Levine BD (2010) Supine cycling plus volume loading prevent cardiovascular deconditioning during bed rest. J Appl Physiol 108:1177–1186. https://doi.org/10.1152/japplphysiol.01408.2009

    Article  Google Scholar 

  • Smith SM, Heer MA, Shackelford LC et al (2012) Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res 27:1896–1906. https://doi.org/10.1002/jbmr.1647

    Article  Google Scholar 

  • Smorawiński J, Nazar K, Kaciuba-Uscilko H et al (2001) Effects of 3-day bed rest on physiological responses to graded exercise in athletes and sedentary men. J Appl Physiol 91:249–257

    Google Scholar 

  • Stenger MB, Evans JM, Patwardhan AR et al (2007) Artificial gravity training improves orthostatic tolerance in ambulatory men and women. Acta Astronaut 60:267–272. https://doi.org/10.1016/j.actaastro.2006.08.008

    Article  Google Scholar 

  • Stenger MB, Evans JM, Knapp CF et al (2012) Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur J Appl Physiol 112:605–616. https://doi.org/10.1007/s00421-011-2005-1

    Article  Google Scholar 

  • Strandgaard S (1976) Autoregulation of cerebral blood flow in hypertensive patients. The modifying influence of prolonged antihypertensive treatment on the tolerance to acute, drug-induced hypotension. Circulation 53:720–727. https://doi.org/10.1161/01.CIR.53.4.720

    Article  Google Scholar 

  • Taylor CR, Hanna M, Behnke BJ et al (2013) Spaceflight-induced alterations in cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated cerebral perfusion and intracranial pressure. FASEB J 27:2282–2292. https://doi.org/10.1096/fj.12-222687

    Article  Google Scholar 

  • Trappe T, Trappe S, Lee G et al (2006) Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol 100:951–957. https://doi.org/10.1152/japplphysiol.01083.2005

    Article  Google Scholar 

  • Trappe TA, Burd NA, Louis ES et al (2007) Influence of concurrent exercise or nutrition countermeasures on thigh and calf muscle size and function during 60 days of bed rest in women. Acta Physiol 191:147–159. https://doi.org/10.1111/j.1748-1716.2007.01728.x

    Article  Google Scholar 

  • Tuday EC, Meck JV, Nyhan D et al (2007) Microgravity-induced changes in aortic stiffness and their role in orthostatic intolerance. J Appl Physiol 102:853–858. https://doi.org/10.1152/japplphysiol.00950.2006

    Article  Google Scholar 

  • Vernikos J, Ludwig DA, Ertl AC et al (1996) Effect of standing or walking on physiological changes induced by head down bed rest: implications for spaceflight. Aviat Space Environ Med 67:1069–1079

    Google Scholar 

  • Videbaek R, Norsk P (1997) Atrial distension in humans during microgravity induced by parabolic flights. J Appl Physiol 83:1862–1866

    Google Scholar 

  • Vil-Viliams IF, Kotovskaya AR, Gavrilova LN et al (1998) Human +Gx tolerance with the use of anti-G suits during descent from orbit of the Soyuz space vehicles. J Gravit Physiol 5:P129–P130

    Google Scholar 

  • Vogiatzi G, Tousoulis D, Stefanadis C (2009) The role of oxidative stress in atherosclerosis. Hell J Cardiol 50:402–409

    Google Scholar 

  • Watenpaugh DE, Fortney SM, Ballard RE et al (1994) Lower body negative pressure exercise during bed rest maintains orthostatic tolerance. FASEB J 8:A261

    Google Scholar 

  • Watenpaugh DE, Ballard RE, Schneider SM et al (2000) Supine lower body negative pressure exercise during bed rest maintains upright exercise capacity. J Appl Physiol 89:218–227

    Google Scholar 

  • Watenpaugh DE, O’Leary DD, Schneider SM et al (2007) Lower body negative pressure exercise plus brief postexercise lower body negative pressure improve post-bed rest orthostatic tolerance. J Appl Physiol 103:1964–1972. https://doi.org/10.1152/japplphysiol.00132.2007

    Article  Google Scholar 

  • Waters WW, Ziegler MG, Meck JV (2002) Postspaceflight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol 92:586–594

    Google Scholar 

  • White P, Nyberg J, Finney L, White W (1966) Influence of periodic centrifugation on cardiovascular functions of man during bed rest. Douglas Aircraft, Co., Inc., San Monica

    Google Scholar 

  • Williams DA, Convertino VA (1988) Circulating lactate and FFA during exercise: effect of reduction in plasma volume following exposure to simulated microgravity. Aviat Space Environ Med 59:1042–1046

    Google Scholar 

  • Wilson TE, Cui J, Zhang R et al (2002) Skin cooling maintains cerebral blood flow velocity and orthostatic tolerance during tilting in heated humans. J Appl Physiol 93:85–91. https://doi.org/10.1152/japplphysiol.01043.2001

    Article  Google Scholar 

  • Wolthuis RA, Bergman SA, Nicogossian AE (1974) Physiological effects of locally applied reduced pressure in man. Physiol Rev 54:566–595

    Google Scholar 

  • Zhang LF (2001) Vascular adaptation to microgravity: what have we learned? J Appl Physiol 91:2415–2430

    Google Scholar 

  • Zhang LF (2013) Region-specific vascular remodeling and its prevention by artificial gravity in weightless environment. Eur J Appl Physiol 113:2873–2895. https://doi.org/10.1007/s00421-013-2597-8

    Article  Google Scholar 

  • Zuj KA, Arbeille P, Shoemaker JK et al (2012) Impaired cerebrovascular autoregulation and reduced CO2 reactivity after long duration spaceflight. Am J Physiol Heart Circ Physiol 302:H2592–H2598. https://doi.org/10.1152/ajpheart.00029.2012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael B. Stenger .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 This is a U.S. Government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stenger, M.B., Laurie, S.S., Lee, S.M.C., Platts, S.H. (2020). Cardiovascular Deconditioning and Exercise. In: Young, L.R., Sutton, J.P. (eds) Handbook of Bioastronautics. Springer, Cham. https://doi.org/10.1007/978-3-319-10152-1_20-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-10152-1_20-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-10152-1

  • Online ISBN: 978-3-319-10152-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Cardiovascular Deconditioning and Exercise
    Published:
    23 October 2020

    DOI: https://doi.org/10.1007/978-3-319-10152-1_20-2

  2. Original

    Cardiovascular Deconditioning and Exercise
    Published:
    10 November 2018

    DOI: https://doi.org/10.1007/978-3-319-10152-1_20-1