Skip to main content

Augmented Reality in Image-Guided Surgery

Encyclopedia of Computer Graphics and Games

Synonyms

Augmented reality in surgery; Image-guided surgery; Surgical navigation

Definition

Augmented reality visualization in image-guided surgery provides the surgeon with the ability to access the radiological images and surgical planning contextually to the anatomy of the real patient. It aims to integrate surgical navigation with virtual planning.

Introduction

The general ability to see into a living human system and to transfer the three-dimensional complexity of the human body into a comprehensive and useful visual representation has historically been considered of utmost importance by physicians in their will to pass on the acquired knowledge and experience to future generations (Fig. 1). In more recent times, the growing availability of new medical imaging modalities together with the need to reduce the invasiveness of the surgical procedures has encouraged the research for new 3D visualization modalities of patient-specific virtual reconstructions of the anatomy. Those...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abe, Y., Sato, S., Kato, K., Hyakumachi, T., Yanagibashi, Y., Ito, M., Abumi, K.: A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J. Neurosurg. Spine. 19(4), 492–501 (2013). https://doi.org/10.3171/2013.7.Spine12917

    Article  Google Scholar 

  • Badiali, G., Ferrari, V., Cutolo, F., Freschi, C., Caramella, D., Bianchi, A., Marchetti, C.: Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning. J. Cranio-Maxillofac. Surg. 42(8), 1970–1976 (2014). https://doi.org/10.1016/j.jcms.2014.09.001

    Article  Google Scholar 

  • Baumhauer, M., Simpfendoerfer, T., Schwarz, R., Seitel, M., Müller-Stich, B., Gutt, C., Rassweiler, J., Meinzer, H.-P., Wolf, I.: Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization. In: Medical Imaging 2007, pp. 650911-650911-650912. Society for Optics and Photonics (2007)

    Google Scholar 

  • Benton, S.A.: Selected Papers on Three-dimensional Displays. SPIE Optical Engineering Press, Bellingham (2001)

    Google Scholar 

  • Birkfellner, W., Figl, M., Huber, K., Watzinger, F., Wanschitz, F., Hummel, J., Hanel, R., Greimel, W., Homolka, P., Ewers, R., Bergmann, H.: A head-mounted operating binocular for augmented reality visualization in medicine – design and initial evaluation. IEEE Trans. Med. Imaging. 21(8), 991–997 (2002). https://doi.org/10.1109/Tmi.2002.803099

    Article  MATH  Google Scholar 

  • Blackwelll, M., Nikou, C., DiGioia, A.M., Kanade, T.: An image overlay system for medical data visualization. Med. Image Comput. Comput. Assist. Interv. Miccai’98. 1496, 232–240 (1998)

    Google Scholar 

  • Cabrilo, I., Bijlenga, P., Schaller, K.: Augmented reality in the surgery of cerebral arteriovenous malformations: technique assessment and considerations. Acta Neurochir. 156(9), 1769–1774 (2014). https://doi.org/10.1007/s00701-014-2183-9

    Article  Google Scholar 

  • Cabrilo, I., Schaller, K., Bijlenga, P.: Augmented reality-assisted bypass surgery: embracing minimal invasiveness. World Neurosurg. 83(4), 596–602 (2015). https://doi.org/10.1016/j.wneu.2014.12.020

    Article  Google Scholar 

  • Caversaccio, M., Giraldez, J.G., Thoranaghatte, R., Zheng, G., Eggli, P., Nolte, L.P., Ballester, M.A.G.: Augmented reality endoscopic system (ARES): preliminary results. Rhinology. 46(2), 156–158 (2008)

    Google Scholar 

  • Cutolo, F., Parchi, P.D., Ferrari, V.: Video see through AR head-mounted display for medical procedures. Int. Sym. Mix Augment, 393–396 (2014)

    Google Scholar 

  • Cutolo, F., Badiali, G., Ferrari, V.: Human-PnP: ergonomic AR interaction paradigm for manual placement of rigid bodies. Augmented Environ. Comput. Assist. Interv. Ae-Cai. 9365, 50–60 (2015). https://doi.org/10.1007/978-3-319-24601-7_6

    Article  Google Scholar 

  • Cutolo, F., Carbone, M., Parchi, P.D., Ferrari, V., Lisanti, M., Ferrari, M.: Application of a new wearable augmented reality video see-through display to aid percutaneous procedures in spine surgery. In: De Paolis, L.T., Mongelli, A. (eds.) Augmented Reality, Virtual Reality, and Computer Graphics: Third International Conference, AVR 2016, Lecce, Italy, June 15–18, 2016. Proceedings, Part II, pp. 43–54. Springer International Publishing, Cham (2016a)

    Google Scholar 

  • Cutolo, F., Freschi, C., Mascioli, S., Parchi, P., Ferrari, M., Ferrari, V.: Robust and accurate algorithm for wearable stereoscopic augmented reality with three indistinguishable markers. Electronics. 5(3), 59 (2016b)

    Article  Google Scholar 

  • Cutolo, F., Meola, A., Carbone, M., Sinceri, S., Cagnazzo, F., Denaro, E., Esposito, N., Ferrari, M., Ferrari, V.: A new head-mounted display-based augmented reality system in neurosurgical oncology: a study on phantom. Comput. Assist. Surg. 22(1), 39–53 (2017). https://doi.org/10.1080/24699322.2017.1358400

    Article  Google Scholar 

  • Deng, W., Li, F., Wang, M., Song, Z.: Easy-to-use augmented reality neuronavigation using a wireless tablet PC. Stereotact. Funct. Neurosurg. 92(1), 17–24 (2014). https://doi.org/10.1159/000354816

    Article  Google Scholar 

  • Devernay, F., Mourgues, F., Coste-Maniere, E.: Towards endoscopic augmented reality for robotically assisted minimally invasive cardiac surgery. In: International Workshop on Medical Imaging and Augmented Reality, Proceedings, pp. 16–20. (2001)

    Google Scholar 

  • Edwards, P.J., Johnson, L.G., Hawkes, D.J., Fenlon, M.R.,Strong, A., Gleeson, M.: Clinical experience and perception in stereo augmented reality surgical navigation. In: Yang, G.Z., Jiang, T. (eds.) MIAR, pp. 369–376. Springer, Berlin/Heidelberg (2004). https://doi.org/10.1007/978-3-540-28626-4_45

  • Elmi-Terander, A., Skulason, H., Soderman, M., Racadio, J., Homan, R., Babic, D., van der Vaart, N., Nachabe, R.: Surgical navigation technology based on augmented reality and integrated 3D intraoperative imaging: a spine cadaveric feasibility and accuracy study. Spine. 41(21), E1303–E1311 (2016). https://doi.org/10.1097/BRS.0000000000001830

    Article  Google Scholar 

  • Falk, V., Mourgues, F., Adhami, L., Jacobs, S., Thiele, H., Nitzsche, S., Mohr, F.W., Coste-Maniere, T.: Cardio navigation: planning, simulation, and augmented reality in robotic assisted endoscopic bypass grafting. Ann. Thorac. Surg. 79(6), 2040–2048 (2005). https://doi.org/10.1016/j/athorascur.2004.11.060

    Article  Google Scholar 

  • Feuerstein, M., Mussack, T., Heining, S.M., Navab, N.: Intraoperative laparoscope augmentation for port placement and resection planning in minimally invasive liver resection. IEEE Trans. Med. Imaging. 27(3), 355–369 (2008). https://doi.org/10.1109/Tmi.2007.907327

    Article  Google Scholar 

  • Freysinger, W., Gunkel, A.R., Thumfart, W.F.: Image-guided endoscopic ENT surgery. Eur. Arch. Otorhinolaryngol. 254(7), 343–346 (1997). https://doi.org/10.1007/Bf02630726

    Article  Google Scholar 

  • Fritz, J., U-Thainual, P., Ungi, T., Flammang, A.J., Kathuria, S., Fichtinger, G., Iordachita, I.I., Carrino, J.A.: MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc. Intervent. Radiol. 37(6), 1589–1596 (2014). https://doi.org/10.1007/s00270-014-0885-2

    Article  Google Scholar 

  • Genc, Y., Tuceryan, M., Navab, N.: Practical solutions for calibration of optical see-through devices. In: International Symposium on Mixed and Augmented Reality, Proceedings, pp. 169–175 (2002)

    Google Scholar 

  • Gilson, S.J., Fitzgibbon, A.W., Glennerster, A.: Spatial calibration of an optical see-through head-mounted display. J. Neurosci. Methods. 173(1), 140–146 (2008). https://doi.org/10.1016/j.jneumeth.2008.05.015

    Article  Google Scholar 

  • Grimson, W.E.L., Ettinger, G.J., White, S.J., LozanoPerez, T., Wells, W.M., Kikinis, R.: An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Trans. Med. Imaging. 15(2), 129–140 (1996). https://doi.org/10.1109/42.491415

    Article  Google Scholar 

  • Holliman, N.S., Dodgson, N.A., Favalora, G.E., Pockett, L.: Three-dimensional displays: a review and applications analysis. IEEE Trans. Broadcast. 57(2), 362–371 (2011). https://doi.org/10.1109/Tbc.2011.2130930

    Article  Google Scholar 

  • Inoue, D., Cho, B., Mori, M., Kikkawa, Y., Amano, T., Nakamizo, A., Yoshimoto, K., Mizoguchi, M., Tomikawa, M., Hong, J., Hashizume, M., Sasaki, T.: Preliminary study on the clinical application of augmented reality neuronavigation. J. Neurol. Surg. A. Cent. Eur. Neurosurg. 74(2), 71–76 (2013). https://doi.org/10.1055/s-0032-1333415

    Article  Google Scholar 

  • Iseki, H., Masutani, Y., Iwahara, M., Tanikawa, T., Muragaki, Y., Taira, T., Dohi, T., Takakura, K.: Volumegraph (overlaid three-dimensional image-guided navigation). Clinical application of augmented reality in neurosurgery. Stereotact. Funct. Neurosurg. 68(1–4 Pt 1), 18–24 (1997)

    Article  Google Scholar 

  • Kellner, F., Bolte, B., Bruder, G., Rautenberg, U., Steinicke, F., Lappe, M., Koch, R.: Geometric calibration of head-mounted displays and its effects on distance estimation. IEEE Trans. Vis. Comput. Graph. 18(4), 589–596 (2012)

    Article  Google Scholar 

  • Kersten-Oertel, M., Jannin, P., Collins, D.L.: DVV: a taxonomy for mixed reality visualization in image guided surgery. IEEE Trans. Vis. Comput. Graph. 18(2), 332–352 (2012). https://doi.org/10.1109/TVCG.2011.50

    Article  Google Scholar 

  • Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput. Med. Imaging Graph. 37(2), 98–112 (2013). https://doi.org/10.1016/j.compmedimag.2013.01.009

    Article  Google Scholar 

  • Kersten-Oertel, M., Gerard, I., Drouin, S., Mok, K., Sirhan, D., Sinclair, D.S., Collins, D.L.: Augmented reality in neurovascular surgery: feasibility and first uses in the operating room. Int. J. Comput. Assist. Radiol. Surg. 10(11), 1823–1836 (2015). https://doi.org/10.1007/s11548-015-1163-8

    Article  Google Scholar 

  • Liao, H., Nakajima, S., Iwahara, M., Kobayashi, E., Sakuma, I., Yahagi, N., Dohi, T.: Intra-operative real-time 3-D information display system based on integral videography. In: Niessen, W., Viergever, M. (eds.) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2001. Lecture Notes in Computer Science, vol. 2208, pp. 392–400. Springer Berlin, (2001)

    Google Scholar 

  • Liao, H., Hata, N., Nakajima, S., Iwahara, M., Sakuma, I., Dohi, T.: Surgical navigation by autostereoscopic image overlay of integral videography. IEEE Trans. Inf. Technol. Biomed. 8(2), 114–121 (2004)

    Article  Google Scholar 

  • Liao, H., Inomata, T., Sakuma, I., Dohi, T.: Surgical navigation of integral videography image overlay for open MRI-guided glioma surgery. Med. Imaging Augmented Real. 4091, 187–194 (2006)

    Article  Google Scholar 

  • Liao, H.E., Inomata, T., Sakuma, I., Dohi, T.: 3-D augmented reality for MRI-guided surgery using integral videography autostereoscopic image overlay. IEEE Trans. Biomed. Eng. 57(6), 1476–1486 (2010). https://doi.org/10.1109/Tbme.2010.2040278

    Article  Google Scholar 

  • Lovo, E.E., Quintana, J.C., Puebla, M.C., Torrealba, G., Santos, J.L., Lira, I.H., Tagle, P.: A novel, inexpensive method of image coregistration for applications in image-guided surgery using augmented reality. Neurosurgery. 60(4 Suppl 2), 366–371.; discussion 371–362 (2007). https://doi.org/10.1227/01.NEU.0000255360.32689.FA

    Google Scholar 

  • Low, D., Lee, C.K., Dip, L.L., Ng, W.H., Ang, B.T., Ng, I.: Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas. Br. J. Neurosurg. 24(1), 69–74 (2010). https://doi.org/10.3109/02688690903506093

    Article  Google Scholar 

  • Marmulla, R., Hoppe, H., Muhling, J., Eggers, G.: An augmented reality system for image-guided surgery. Int. J. Oral Maxillofac. Surg. 34(6), 594–596 (2005). https://doi.org/10.1016/j.ijom.2005.05.004

    Article  Google Scholar 

  • Meola, A., Cutolo, F., Carbone, M., Cagnazzo, F., Ferrari, M., Ferrari, V.: Augmented reality in neurosurgery: a systematic review. Neurosurg. Rev. (2016). https://doi.org/10.1007/s10143-016-0732-9

  • Mourgues, F., Coste-Maniere, P.: Flexible calibration of actuated stereoscopic endoscope for overlay in robot assisted surgery. Med. Image Comput. Comput-Assist. Interv. Miccai. 2488(Pt 1), 25–34 (2002.) 2002

    MATH  Google Scholar 

  • Mukawa, H., Akutsu, K., Matsumura, I., Nakano, S., Yoshida, T., Kuwahara, M., Aiki, K., Ogawa, M.: Distinguished paper: a full color eyewear display using holographic planar waveguides. In: 2008 Sid International Symposium, Digest of Technical Papers, vol Xxxix, Books I–Iii 39, pp. 89–92 (2008)

    Google Scholar 

  • Muller, M., Rassweiler, M.C., Klein, J., Seitel, A., Gondan, M., Baumhauer, M., Teber, D., Rassweiler, J.J., Meinzer, H.P., Maier-Hein, L.: Mobile augmented reality for computer-assisted percutaneous nephrolithotomy. Int. J. Comput. Assist. Radiol. Surg. 8(4), 663–675 (2013). https://doi.org/10.1007/s11548-013-0828-4

    Article  Google Scholar 

  • Narita, Y., Tsukagoshi, S., Suzuki, M., Miyakita, Y., Ohno, M., Arita, H., Saito, Y., Kokojima, Y., Watanabe, N., Moriyama, N., Shibui, S.: Usefulness of a glass-free medical three-dimensional autostereoscopic display in neurosurgery. Int. J. Comput. Assist. Radiol. Surg. 9(5), 905–911 (2014). https://doi.org/10.1007/s11548-014-0984-1

    Article  Google Scholar 

  • Navab, N., Traub, J., Sielhorst, T., Feuerstein, M., Bichlmeier, C.: Action- and workflow-driven augmented reality for computer-aided medical procedures. IEEE Comput. Graph. Appl. 27(5), 10–14 (2007). https://doi.org/10.1109/Mcg.2007.117

    Article  Google Scholar 

  • Navab, N., Heining, S.M., Traub, J.: Camera Augmented Mobile C-Arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans. Med. Imaging. 29(7), 1412–1423 (2010). https://doi.org/10.1109/Tmi.2009.2021947

    Article  Google Scholar 

  • Nicolau, S., Soler, L., Mutter, D., Marescaux, J.: Augmented reality in laparoscopic surgical oncology. Surg. Oncol. Oxf. 20(3), 189–201 (2011). https://doi.org/10.1016/j.suronc.2011.07.002

    Article  Google Scholar 

  • Peters, T.M.: Image-guided surgery: from X-rays to virtual reality. Comput. Methods. Biomech. Biomed. Engin. 4(1), 27–57 (2000)

    Article  MathSciNet  Google Scholar 

  • Peters, T.M.: Image-guidance for surgical procedures. Phys. Med. Biol. 51(14), R505–R540 (2006). https://doi.org/10.1088/0031-9155/51/14/R01

    Article  Google Scholar 

  • Plopski, A., Itoh, Y., Nitschke, C., Kiyokawa, K., Klinker, G., Takemura, H.: Corneal-imaging calibration for optical see-through head-mounted displays. IEEE Trans. Vis. Comput. Graph. 21(4), 481–490 (2015). https://doi.org/10.1109/Tvcg.2015.2391857

    Article  Google Scholar 

  • Plopski, A., Orlosky, J., Itoh, Y., Nitschke, C., Kiyokawa, K., Klinker, G.: Automated spatial calibration of HMD systems with unconstrained eye-cameras. In: Proceedings of the 2016 15th IEEE International Symposium on Mixed and Augmented Reality (Ismar), pp. 94–99 (2016). https://doi.org/10.1109/Ismar.2016.16

  • Rankin, T.M., Slepian, M.J., Armstrong, D.G.: Augmented reality in surgery. In: Latifi, R., Rhee, P., Gruessner, R.W.G. (eds.) Technological Advances in Surgery, Trauma and Critical Care, pp. 59–71. Springer, New York (2015)

    Chapter  Google Scholar 

  • Roberts, D.W., Strohbehn, J.W., Hatch, J.F., Murray, W., Kettenberger, H.: A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J. Neurosurg. 65(4), 545–549 (1986). https://doi.org/10.3171/jns.1986.65.4.0545

    Article  Google Scholar 

  • Rolland, J.P., Cakmakci, O.: The past, present, and future of head-mounted display designs. In: Photonics Asia 2005, p. 10. SPIE

    Google Scholar 

  • Rolland, J.P., Holloway, R.L., Fuchs, H.: A comparison of optical and video see-through head-mounted displays. Telemanipulator Telepresence Technol. 2351, 293–307 (1994)

    Article  Google Scholar 

  • Sielhorst, T., Feuerstein, M., Navab, N.: Advanced medical displays: a literature review of augmented reality. J. Disp. Technol. 4(4), 451–467 (2008). https://doi.org/10.1109/JDT.2008.2001575

    Article  Google Scholar 

  • Stetten, G., Chib, V., Hildebrand, D., Bursee, J.: Real time tomographic reflection: Phantoms for calibration and biopsy. In: IEEE and ACM International Symposium on Augmented Reality, Proceedings, Los Alamitos, IEEE Press, 11–19 (2001)

    Google Scholar 

  • Su, L.M., Vagvoigyi, B.P., Agarwal, R., Reiley, C.E., Taylor, R.H., Hager, G.D.: Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology. 73(4), 896–900 (2009). https://doi.org/10.1016/j.urology.2008.11.040

    Article  Google Scholar 

  • Suenaga, H., Tran, H.H., Liao, H.G., Masamune, K., Dohi, T., Hoshi, K., Mori, Y., Takato, T.: Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study. Int. J. Oral Sci. 5(2), 98–102 (2013). https://doi.org/10.1038/ijos.2013.26

    Article  Google Scholar 

  • Suenaga, H., Tran, H.H., Liao, H., Masamune, K., Dohi, T., Hoshi, K., Takato, T.: Vision-based markerless registration using stereo vision and an augmented reality surgical navigation system: a pilot study. BMC Med. Imaging. 15, 51 (2015). https://doi.org/10.1186/s12880-015-0089-5. ARTN 51

    Article  Google Scholar 

  • Tuceryan, M., Genc, Y., Navab, N.: Single-point active alignment method (SPAAM) for optical see-through HMD calibration for augmented reality. Presence-Teleop Virt Environ. 11(3), 259–276 (2002). https://doi.org/10.1162/105474602317473213

    Article  Google Scholar 

  • Wang, J., Suenaga, H., Yang, L., Kobayashi, E., Sakuma, I.: Video see-through augmented reality for oral and maxillofacial surgery. The international journal of medical robotics + computer assisted surgery: MRCAS 13(2) (2017). https://doi.org/10.1002/rcs.1754

  • Wesarg, S., Firle, E.A., Schwald, B., Seibert, H., Zogal, P., Roeddiger, S.: Accuracy of needle implantation in brachytherapy using a medical AR system – a phantom study. Med. Imaging 2004: Visual. Image-Guided Proced. Display. 5367, 341–352 (2004). https://doi.org/10.1117/12.535415

    Article  Google Scholar 

  • Wu, J.R., Wang, M.L., Liu, K.C., Hu, M.H., Lee, P.Y.: Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput. Methods Prog. Biomed. 113(3), 869–881 (2014). https://doi.org/10.1016/j.cmpb.2013.12.071

    Article  Google Scholar 

  • Zeng, B., Meng, F., Ding, H., Wang, G.: A surgical robot with augmented reality visualization for stereoelectroencephalography electrode implantation. Int. J. Comput. Assist. Radiol. Surg. 12(8), 1355–1368 (2017). https://doi.org/10.1007/s11548-017-1634-1

    Article  Google Scholar 

  • Zhu, M., Liu, F., Chai, G., Pan, J.J., Jiang, T., Lin, L., Xin, Y., Zhang, Y., Li, Q.: A novel augmented reality system for displaying inferior alveolar nerve bundles in maxillofacial surgery. Sci Rep. 7, 42365 (2017). https://doi.org/10.1038/srep42365

    Article  Google Scholar 

  • Zinser, M.J., Mischkowski, R.A., Dreiseidler, T., Thamm, O.C., Rothamel, D., Zoller, J.E.: Computer-assisted orthognathic surgery: waferless maxillary positioning, versatility, and accuracy of an image-guided visualisation display. Brit. J. Oral. Max. Surg. 51(8), 827–833 (2013a). https://doi.org/10.1016/j.bjoms.2013.06.014

    Article  Google Scholar 

  • Zinser, M.J., Sailer, H.F., Ritter, L., Braumann, B., Maegele, M., Zoller, J.E.: A paradigm shift in orthognathic surgery? A comparison of navigation, computer-aided designed/computer-aided manufactured splints, and “classic” intermaxillary splints to surgical transfer of virtual orthognathic planning. J. Oral. Maxillofac. Surg. 71(12.), 2151), e2151–e2121 (2013b). https://doi.org/10.1016/j.joms.2013.07.007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Cutolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cutolo, F. (2018). Augmented Reality in Image-Guided Surgery. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_78-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08234-9_78-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08234-9

  • Online ISBN: 978-3-319-08234-9

  • eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Augmented Reality in Image-Guided Surgery
    Published:
    20 February 2018

    DOI: https://doi.org/10.1007/978-3-319-08234-9_78-2

  2. Original

    Augmented Reality in Image-Guided Surgery
    Published:
    21 November 2017

    DOI: https://doi.org/10.1007/978-3-319-08234-9_78-1