Bands and Bandgaps in Solids

  • Karl W. Böer
  • Udo W. PohlEmail author
Living reference work entry

Later version available View entry history



Valence and conduction bands and the bandgap in between these bands determine the electronic properties of solids. For semiconductors, the band structure of the conduction band and the valence bands near the edge to the fundamental bandgap is of particular interest. Both the band structure and bandgap are influenced by external parameters such as temperature and pressure and can also be changed by alloying and heavy doping.

In low-dimensional semiconductors like superlattices and quantum wells, quantum wires and quantum dots anisotropic carrier confinement occurs. The effective gap and energies in conduction and valence bands can be varied by changing spatial dimensions and barrier height of the low-dimensional structure. The bands in amorphous semiconductors near the band edge are ill-defined since long-range periodicity is missing. Still the density-of-state distribution shows significant similarities to that of the same material in the crystallite state.


Bandgap energy Bowing Conduction bands Confined states Cyclotron resonance Density of states dimensionality Effective mass Hole effective mass HOMO LUMO Luttinger parameters Quantum dots Quantum wells Quantum wires Valence bands 


  1. Abram RA, Res GJ, Wilson BLH (1978) Heavily doped semiconductors and devices. Adv Phys 27:799ADSCrossRefGoogle Scholar
  2. Aggarwal RL, Zuteck MD, Lax B (1969) Magnetopiezotransmission studies of the indirect transition in germanium. Phys Rev 180:800ADSCrossRefGoogle Scholar
  3. Akiyama H (1998) One-dimensional excitons in GaAs quantum wires. J Phys Condens Matter 10:3095ADSCrossRefGoogle Scholar
  4. Ando T, Fowler AB, Stern F (1982) Electronic properties of two-dimensional systems. Rev Mod Phys 54:437ADSCrossRefGoogle Scholar
  5. Antončik E (1955) On the theory of temperature shift of the absorption curve in non-polar crystals. Czech J Phys 5:449ADSCrossRefGoogle Scholar
  6. Asada M, Miyamoto Y, Suematsu Y (1986) Gain and threshold of three-dimensional quantum-box lasers. IEEE J Quantum Electron QE 22:1915ADSCrossRefGoogle Scholar
  7. Bastard G, Brum JA (1986) Electronic states in semiconductor heterostructures. IEEE J Quantum Electron QE 22:1625ADSCrossRefGoogle Scholar
  8. Batra IP, Ciraci S, Nelson JS (1987) Confined states and stability of GaAs–AlAs superlattices. J Vac Sci Technol B 5:1300CrossRefGoogle Scholar
  9. Berggren K-F, Sernelius BE (1984) Intervalley mixing versus disorder in heavily doped n-type silicon. Phys Rev B 29:5575ADSCrossRefGoogle Scholar
  10. Bernard JE, Zunger A (1987) Electronic structure of ZnS, ZnSe, ZnTe, and their pseudobinary alloys. Phys Rev B 36:3199ADSCrossRefGoogle Scholar
  11. Bimberg D, Grundmann M, Ledentsov NN (1999) Quantum dot heterostructures. J. Wiley, ChichesterGoogle Scholar
  12. Bir GL, Pikus GE (1974) Symmetry and strain-induced effects in semiconductors. Wiley, New YorkGoogle Scholar
  13. Blakemore JS (1982) Semiconducting and other major properties of gallium arsenide. J Appl Phys 53:R123ADSCrossRefGoogle Scholar
  14. Bludau W, Onton A, Heinke W (1974) Temperature dependence of the band gap of silicon. J Appl Phys 45:1846Google Scholar
  15. Brédas JL, Calbert JP, da Silva Filho DA, Cornil J (2002) Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci U S A 99:5804ADSCrossRefGoogle Scholar
  16. Brooks H (1955) Theory of the electrical properties of germanium and silicon. Adv Electron Electron Phys 7:85CrossRefGoogle Scholar
  17. Bullett DW, Kelly MJ (1975) The valence bands of model amorphous semiconductor structures. Solid State Commun 16:1379ADSCrossRefGoogle Scholar
  18. Chang LL, Esaki L, Howard WE, Ludeke R (1973a) The growth of a GaAs–GaAlAs Superlattice. J Vac Sci Technol 10:11ADSCrossRefGoogle Scholar
  19. Chang LL, Esaki L, Howard WE, Ludeke R, Schul G (1973b) Structures grown by molecular beam epitaxy. J Vac Sci Technol 10:655ADSCrossRefGoogle Scholar
  20. Cheng YC, Silbey RJ, da Silva Filho DA, Calbert JP, Cornil J, Brédas JL (2003) Three-dimensional band structure and bandlike mobility in oligoacene single crystals: a theoretical investigation. J Chem Phys 118:3764ADSCrossRefGoogle Scholar
  21. Cho AY (1971) Growth of periodic structures by the molecular-beam method. Appl Phys Lett 19:467ADSCrossRefGoogle Scholar
  22. Chuang SL, Chang CS (1996) Effective-mass Hamiltonian for strained wurtzite GaN and analytical solutions. Appl Phys Lett 68:1657ADSCrossRefGoogle Scholar
  23. Cohen ML (1962) Electron–phonon self-energies in many-valley semiconductors. Phys Rev 128:131ADSCrossRefGoogle Scholar
  24. Collins RT, Vina L, Wang WI, Mailhiot C, Smith DL (1987) Electronic properties of quantum wells in perturbing fields. Proc SPIE 792:2ADSCrossRefGoogle Scholar
  25. Connell GAN, Street RN (1980) Amorphous semiconductors. In: Moss TS, Keller SP (eds) Handbook on semiconductors, vol 3, Materials properties and preparation. North Holland, Amsterdam, pp 689–801Google Scholar
  26. Cracknell AP, Wong KC (1973) The fermi surface: its concepts, determination, and use in the physics of metals. Oxford University Press, OxfordGoogle Scholar
  27. Dexter RN, Zeiger HJ, Lax B (1956) Cyclotron resonance experiments in silicon and germanium. Phys Rev 104:637ADSCrossRefGoogle Scholar
  28. Dimmock JO, Melngailis I, Strauss AJ (1966) Band structure and laser action in PbxSn1-xTe. Phys Rev Lett 16:1193ADSCrossRefGoogle Scholar
  29. Dingle R (1975) Confined carrier quantum states in ultrathin semiconductor heterostructures. In: Queisser HJ (ed) Festkörperprobleme, advances in solid state physics, vol 15. Pergamon/Vieweg, Braunschweig, p 21Google Scholar
  30. Dingle R, Wiegmann W, Henry CH (1974) Quantum states of confined carriers in very thin AlxGa1-xAs–GaAs–AlxGa1-xAs heterostructures. Phys Rev Lett 33:827ADSCrossRefGoogle Scholar
  31. Djurovich PI, Mayo EI, Forrest SR, Thompson ME (2009) Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Org Electron 10:515CrossRefGoogle Scholar
  32. Dresselhaus G, Kip AF, Kittel C (1955) Cyclotron resonance of electrons and holes in silicon and germanium crystals. Phys Rev 98:368ADSCrossRefGoogle Scholar
  33. D’yakonov MI, Perel’ VI (1971) On spin orientation of electrons in interband absorption of light in semiconductors. Sov Phys JETP 33:1053ADSGoogle Scholar
  34. Economou N, Cohen MH, Freed KF, Kirkpatrick ES (1974) Electronic structure of disordered materials. In: Tauc J (ed) Amorphous and liquid semiconductors. Plenum Press, New York, p 101Google Scholar
  35. Edwards AL, Slykhouse TE, Drickamer HG (1959) The effect of pressure on zinc blende and wurtzite structures. J Phys Chem Solids 11:140ADSCrossRefGoogle Scholar
  36. Esaki L (1985) Compositional superlattices. In: Parker EMC (ed) The technology and physics of molecular beam epitaxy. Plenum Press, New York, p 143CrossRefGoogle Scholar
  37. Esaki L, Tsu R (1970) Superlattice and negative differential conductivity in semiconductors. IBM J Res Dev 14:61CrossRefGoogle Scholar
  38. Fan HY (1951) Temperature dependence of the energy gap in semiconductors. Phys Rev 82:900ADSzbMATHCrossRefGoogle Scholar
  39. Ferhat M, Bechstedt F (2002) First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: relation to structural and thermodynamic properties. Phys Rev B 65:075213ADSCrossRefGoogle Scholar
  40. Froyen S, Wood DM, Zunger A (1987) Structural and electronic properties of epitaxial thin-layer SinGen superlattices. Phys Rev B 37:6893ADSCrossRefGoogle Scholar
  41. Hannewald K, Stojanovi VM, Schellekens JMT, Bobbert PA, Kresse G, Hafner J (2004) Theory of polaron bandwidth narrowing in organic molecular crystals. Phys Rev B 69:075211ADSCrossRefGoogle Scholar
  42. Hansen GL, Schmit JL, Casselman TN (1982) Energy gap versus alloy composition and temperature in Hg1−xCdxTe. J Appl Phys 53:7099ADSCrossRefGoogle Scholar
  43. Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. Wiley, New YorkGoogle Scholar
  44. Heine V, van Vechten JA (1976) Effect of electron–hole pairs on phonon frequencies in Si related to temperature dependence of band gaps. Phys Rev B 13:1622ADSCrossRefGoogle Scholar
  45. Hill IG, Kahn A, Soos ZG, Pascal RA Jr (2000) Charge-separation energy in films of π-conjugated organic molecules. Chem Phys Lett 327:181ADSCrossRefGoogle Scholar
  46. Hurt NE (2000) Mathematical physics of quantum wires and devices – from spectral resonances to Anderson localization. Kluwer, DordrechtzbMATHCrossRefGoogle Scholar
  47. Hume-Rothery W (1936) The structure of metals and alloys. The Institute of Metals, LondonGoogle Scholar
  48. Ioffe AF, Regel AR (1960) Non-crystalline, amorphous, and liquid electronic semiconductors. Progr Semicond 4:237Google Scholar
  49. Jaffe JE, Zunger A (1984) Electronic structure of the ternary pnictide semiconductors ZnSiP2, ZnGeP2, ZnSnP2, ZnSiAs2, and MgSiP2. Phys Rev B 30:741ADSCrossRefGoogle Scholar
  50. Jain SC, Roulston DJ (1991) A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers. Sol State Electron 34:453ADSCrossRefGoogle Scholar
  51. Jaros M (1985) Electronic properties of semiconductor alloy systems. Rep Prog Phys 48:1091ADSCrossRefGoogle Scholar
  52. Jen HR, Cherng MJ, Stringfellow GB (1986) Ordered structures in GaAs0.5Sb0.5 alloys grown by organometallic vapor phase epitaxy. Appl Phys Lett 48:1603ADSCrossRefGoogle Scholar
  53. Jeon J-B, Sirenko YM, Kim KW, Littlejohn MA, Stroscio MA (1996) Valence band parameters of wurtzite materials. Sol State Commun 99:423ADSCrossRefGoogle Scholar
  54. Kalt H (1996) Optical properties of III–V semiconductors – the influence of multi-valley band structures, vol 120, Springer series in solid-state sciences. Springer, BerlinGoogle Scholar
  55. Kamimura H, Nakayama T (1987) Comments. Cond Mat Phys 13:143Google Scholar
  56. Kane EO (1957) Band structure of indium antimonide. J Phys Chem Sol 1:249ADSCrossRefGoogle Scholar
  57. Kane EO (1979) Band structure of narrow gap semiconductors. In: Zawadzki W (ed) Proceedings of the international summer school physics narrow gap semiconductor, Nimes. Springer, Berlin, p 13Google Scholar
  58. Klingshirn CF (2012) Semiconductor optics, 4th edn. Springer, Heidelberg/New YorkCrossRefGoogle Scholar
  59. Kroemer H (1983) Heterostructure devices: a device physicist looks at interfaces. Surf Sci 132:543ADSCrossRefGoogle Scholar
  60. Lambrecht WRL, Rodina AV, Limpijumnong S, Segall B, Meyer BK (2002) Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys Rev B 65:075207ADSCrossRefGoogle Scholar
  61. Landsberg PT (1987) The band-to-band Auger effect in semiconductors. Solid State Electron 30:1107ADSCrossRefGoogle Scholar
  62. Landsberg PT, Neugroschel A, Lindholm FA, Sah CT (1985) A model for band-gap shrinkage in semiconductors with application to silicon. Phys Stat Sol (b) 130:255ADSCrossRefGoogle Scholar
  63. Larach S, Shrader RE, Stocker CF (1957) Anomalous variation of band gap with composition in zinc sulfo- and seleno-tellurides. Phys Rev 108:587ADSCrossRefGoogle Scholar
  64. Lautenschlager P, Allen PB, Cardona M (1985) Temperature dependence of band gaps in Si and Ge. Phys Rev B 31:2163ADSCrossRefGoogle Scholar
  65. Lax B (1963) In: Smith RA (ed) Enrico Fermi school of physics semiconductors. Academic Press, New York, p 240Google Scholar
  66. Luttinger JM (1956) Quantum theory of cyclotron resonance in semiconductors: general theory. Phys Rev 102:1030ADSzbMATHCrossRefGoogle Scholar
  67. Mahan GD (1997) Good thermoelectrics. Solid State Phys 51:81Google Scholar
  68. Mahan GD (1980) Energy gap in Si and Ge: impurity dependence. J Appl Phys 51:2634ADSCrossRefGoogle Scholar
  69. Maltezopoulos T, Bolz A, Meyer C, Heyn C, Hansen W, Morgenstern M, Wiesendanger R (2003) Wave-function mapping of InAs quantum dots by scanning tunneling spectroscopy. Phys Rev Lett 91:196804ADSCrossRefGoogle Scholar
  70. Martinez G (1980) Optical properties of semiconductors under pressure. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, vol 2, Optical properties of solids. North Holland, Amsterdam, pp 181–222Google Scholar
  71. Martins JL, Zunger A (1986) Ordering and decomposition in semiconductor alloys. J Mater Res 1:523ADSCrossRefGoogle Scholar
  72. Mavroides JG (1972) Magneto-optical properties. In: Abeles F (ed) Optical properties of solids. North Holland, AmsterdamGoogle Scholar
  73. McCombe BD, Wagner RJ (1975) Intraband magneto-optical studies of semiconductors in the far infrared. Adv Electron Electron Phys 37:1CrossRefGoogle Scholar
  74. Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials. Claredon Press, OxfordGoogle Scholar
  75. Norris DJ, Bawendi MG (1996) Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys Rev B 53:16338ADSCrossRefGoogle Scholar
  76. Ourmazd A, Bean JC (1985) Observation of order–disorder transitions in strained-semiconductor systems. Phys Rev Lett 55:765ADSCrossRefGoogle Scholar
  77. Ousset JC, Leotin J, Askenazy S, Skolnik MS, Stradling RA (1976) Cyclotron resonance measurements of the non-parabolicity of the conduction bands in silicon and germanium. J Phys C (London) 9:2803ADSGoogle Scholar
  78. Pantelides ST, Selloni A, Car R (1985) Energy-gap reduction in heavily-doped silicon: causes and consequences. Solid State Electron 28:17ADSCrossRefGoogle Scholar
  79. Pantelides ST (1978) The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys 50:797ADSCrossRefGoogle Scholar
  80. Pearsall TP (ed) (1982) GaInAsP-alloy semiconductors. Wiley, New YorkGoogle Scholar
  81. Pearsall TP, Bevk J, Feldman LC, Bonar JM, Mannaerts JP, Ourmazd A (1987) Structurally induced optical transitions in Ge-Si superlattices. Phys Rev Lett 58:729; Phys Rev Lett 58:1053Google Scholar
  82. Phillips J (1970) Ionicity of the chemical bond in crystals. Rev Mod Phys 42:317ADSCrossRefGoogle Scholar
  83. Pidgeon CR (1969) In: Haidemanakis ED (ed) Electron structure in solids. Plenum Press, New York, p 47CrossRefGoogle Scholar
  84. Pidgeon CR (1980) Free carrier optical properties of semiconductors. In: Balkanski M (ed) Handbook on semiconductors, vol 2, optical properties of solids. North Holland, Amsterdam, pp 223–328Google Scholar
  85. Pippard AB (1965) Dynamics of conduction electrons. Gordon and Breach, LondonGoogle Scholar
  86. Richardson D (1973) PhD thesis, University of Newcastle. See also: Hill R (1974) Energy-gap variations in semiconductor alloys. J Phys C 7:521Google Scholar
  87. Robertson J (1983) Electronic structure of amorphous semiconductors. Adv Phys 32:361ADSCrossRefGoogle Scholar
  88. Rontani M, Molinari E, Maruccio G, Janson M, Schramm A, Meyer C, Matsui T, Heyn C, Hansen W, Wiesendanger R (2007) Imaging correlated wave functions of few-electron quantum dots: theory and scanning tunneling spectroscopy experiments. J Appl Phys 101:081714ADSCrossRefGoogle Scholar
  89. Rössler U (1984) Nonparabolicity and warping in the conduction band of GaAs. Solid State Commun 49:943ADSCrossRefGoogle Scholar
  90. Saxena AK (1981) Non-Γ deep levels and the conduction band structure of Ga1−xAlxAs alloys. Phys Stat Sol (b) 105:777ADSCrossRefGoogle Scholar
  91. Schliwa A, Winkelnkemper M, Bimberg D (2007) Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots. Phys Rev B 76:205324ADSCrossRefGoogle Scholar
  92. Schmit JL, Stelzer EL (1973) Semiconductor opto-electronics. Butterworths, Stoneham, p 398Google Scholar
  93. Scholes GD (2008) Controlling the optical properties of inorganic nanoparticles. Adv Funct Mater 18:1157CrossRefGoogle Scholar
  94. Schulman JN, McGill TC (1981) Complex band structure and superlattice electronic states. Phys Rev B 23:4149ADSCrossRefGoogle Scholar
  95. Smith SD (1967) Magneto-Optics in crystals. In: S Flﺰgge (ed) Handbuch der Physik vol XXV, 2a, Springer, Berlin/Heidelberg/New York, p 234Google Scholar
  96. Srivastava GP, Martins JL, Zunger A (1986) Atomic structure and ordering in semiconductor alloys. Phys Rev B 31:2561ADSCrossRefGoogle Scholar
  97. Stier O, Grundmann M, Bimberg D (1999) Electronic and optical properties of strained quantum dots modeled by 8-band kp theory. Phys Rev B 59:5688ADSCrossRefGoogle Scholar
  98. Suzuki M, Uenoyama T, Yanase A (1995) First-principles calculations of effective-mass parameters of AlN and GaN. Phys Rev B 52:8132ADSCrossRefGoogle Scholar
  99. Suzuki K, Kanisawa K, Janer C, Perraud S, Takashina K, Fujisawa T, Hirayama Y (2007) Spatial imaging of two-dimensional electronic states in semiconductor quantum wells. Phys Rev Lett 98:136802ADSCrossRefGoogle Scholar
  100. Thorpe MF, Weaire D (1971) Electronic properties of an amorphous solid. II. Further aspects of the theory. Phys Rev B 4:3518ADSCrossRefGoogle Scholar
  101. Tsidilkovski IM, Harus GI, Shelushinina NG (1985) Impurity states and electron transport in gapless semiconductors. Adv Phys 34:43ADSCrossRefGoogle Scholar
  102. Urbieta A, Grandidier B, Nys JP, Deresmes D, Stiévenard D, Lemaître A, Patriarche G, Niquet YM (2008) Scanning tunneling spectroscopy of cleaved InAs/GaAs quantum dots at low temperatures. Phys Rev B 77:155313ADSCrossRefGoogle Scholar
  103. van Overstraeten RJ (1982) Proceedings in physics semiconductor devices. Wiley, New Delhi, p 69Google Scholar
  104. Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34:149ADSCrossRefGoogle Scholar
  105. Voos M, Esaki L (1981) InAs–GaSb superlattices in high magnetic fields. c Ser Sol State Sci 24:292Google Scholar
  106. Vouilloz F, Oberli DY, Dupertuis MA, Gustafsson A, Reinhardt F, Kapon E (1997) Polarization anisotropy and valence band mixing in quantum wires. Phys Rev Lett 78:1580ADSCrossRefGoogle Scholar
  107. Vouilloz F, Oberli DY, Dupertuis MA, Gustafsson A, Reinhardt F, Kapon E (1998) Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires. Phys Rev B 57:12378ADSCrossRefGoogle Scholar
  108. Vrehen QHF (1968) Interband magneto-optical absorption in gallium arsenide. J Phys Chem Sol 29:129ADSCrossRefGoogle Scholar
  109. Vurgaftman I, Meyer JR (2003) Band parameters for nitrogen-containing semiconductors. J Appl Phys 94:3675ADSCrossRefGoogle Scholar
  110. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 89:5815ADSCrossRefGoogle Scholar
  111. Wagner J (1984) Photoluminescence and excitation spectroscopy in heavily doped n- and p-type silicon. Phys Rev B 29:2002ADSCrossRefGoogle Scholar
  112. Watanabe MO, Yoshida J, Mashita M, Nakanisi T, Hojo A (1985) Band discontinuity for GaAs/AlGaAs heterojunction determined by C-V profiling technique. J Appl Phys 57:5340ADSCrossRefGoogle Scholar
  113. Weaire D, Thorpe MF (1971) Electronic properties of an amorphous solid. I. A simple tight-binding theory. Phys Rev B 4:2508ADSCrossRefGoogle Scholar
  114. Wegscheider W, Pfeiffer LN, West KW (1996) GaAs/AlGaAs quantum wire lasers and other low-dimensional structures fabricated by cleaved edge overgrowth. Festkörperprobleme/Adv Solid State Phys 35:155Google Scholar
  115. Wellenhofer GA, Rössler U (1997) Global band structure and near-band-edge states. Phys Status Solidi (b) 202:107ADSCrossRefGoogle Scholar
  116. Wigner EP (1959) Group theory and its application to quantum mechanics of atomic spectra. Academic Press, New YorkzbMATHGoogle Scholar
  117. Wilson AH (1931) The theory of electronic semiconductors. Proc R Soc London A133:458Google Scholar
  118. Woggon U (1997) Optical properties of semiconductor quantum dots. Springer, BerlinGoogle Scholar
  119. Woodall JM (1972) Solution grown Ga1-xAlxAs superlattice structures. J Crystal Growth 12:32ADSCrossRefGoogle Scholar
  120. Yu ET, McCaldin JO, McGill TC (1992) Band offsets in semiconductor heterojunctions, vol 46, Solid State Physics. Academic Press, New York, pp 1–146Google Scholar
  121. Zawadzki W (1974) Electron transport phenomena in small-gap semiconductors. Adv. Phys 23:435Google Scholar
  122. Zawadzki W (1982) Mechanisms of electron scattering in semiconductors. In: Moss TS, Paul W (eds) Handbook on semiconductors, vol 1, Band theory and transport properties. North Holland, Amsterdam, pp 713–803Google Scholar
  123. Ziman JM (1969) The physics of metals, vol 1, Electrons. Cambridge University Press, LondonGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.NaplesUSA
  2. 2.Institut für Festkörperphysik, EW5-1Technische Universität BerlinBerlinGermany

Personalised recommendations