Skip to main content

Carrier Generation

Semiconductor Physics
  • 116 Accesses

Abstract

When the semiconductor is exposed to an external electromagnetic field, a phonon field, or an electric field, free carriers can be generated, resulting in semiconductivity or photoconductivity. Carriers can also be generated by high-energy particles, such as fast electrons or ions. Optical carrier generation proceeds as band-to-band direct or indirect generation or from defect levels with photons of sufficient energy. Thermal generation of free carriers is substantially enhanced by defect centers. Shallow centers may absorb a phonon of sufficient energy or a few phonons involving intermediate steps into excited states; generation from deep centers requires multiphonon-induced giant oscillations.

Generation of carriers by an electric field can at low fields be caused by the Frenkel-Poole effect: a field-enhanced thermal generation from Coulomb-attractive defect centers. At high fields, impact ionization from deep centers or band-to-band impact ionization is observed. At still higher fields in the 106 V/cm range, tunneling from deep defect centers or from the valence band occurs. Besides thickness and height of the barrier, the tunneling probability depends on the shape of the barrier potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    We consider n-type carriers (electrons, indicated by the index n) unless stated otherwise.

  2. 2.

    Except for high-mobility semiconductors for excitation from shallow centers at low temperatures, where impact ionization favorably competes – see Sect. 2.2.

  3. 3.

    This semiclassical approximation of the one-dimensional, stationary Schrödinger equation is named after G. Wentzel, H.A. Kramers, and L. Brillouin.

References

  • Anderson CL, Crowell CR (1972) Threshold energies for electron-hole pair production by impact ionization in semiconductors. Phys Rev B 5:2267

    Article  ADS  Google Scholar 

  • Aspnes DE (1966) Electric-field effects on optical absorption near thresholds in solids. Phys Rev 147:554

    Article  ADS  Google Scholar 

  • Aspnes DE (1967) Electric field effects on the dielectric constant of solids. Phys Rev 153:972

    Article  ADS  Google Scholar 

  • Aspnes DE (1980) Modulation spectroscopy/electric field effects on the dielectric function of semiconductors. In: Moss TS, Balkanski M (eds) Handbook on semiconductors, Optical properties of solids, vol 2. North-Holland Publ, Amsterdam, pp 109–154

    Google Scholar 

  • Baraff GA (1962) Distribution functions and ionization rates for hot electrons in semiconductors. Phys Rev 128:2507

    Article  ADS  MATH  Google Scholar 

  • Böer KW (1977) The CdS/Cu2S solar cell I. Minority carrier generation and transport in the Cu2S emitter. Phys Status Solidi A 40:355

    Article  ADS  Google Scholar 

  • Böer KW, Hänsch HJ, Kümmel U (1959) Anwendung elektro-optischer Effekte zur Analyse des elektrischen Leitungsvorgangs in CdS Einkristallen. Z Phys 155:170. (Application of electro-optical effects fort the analysis of electrical conductance in CdS single crystals, in German)

    Article  ADS  Google Scholar 

  • Bratt PR (1977) Impurity germanium and silicon infrared detectors. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals vol 12. Academic Press, New York, pp 39–142

    Chapter  Google Scholar 

  • Connell GAN, Champhausen DL, Paul W (1972) Theory of Poole-Frenkel conduction in low-mobility semiconductors. Philos Mag 26:541

    Article  ADS  Google Scholar 

  • Curby RC, Ferry DK (1973) Impact ionization in narrow gap semiconductors. Phys Status Solidi A 15:319

    Article  ADS  Google Scholar 

  • Dallacasa V, Paracchini C (1986) Field-enhanced electronic transport in solids. Phys Rev B 34:8967

    Article  ADS  Google Scholar 

  • Dmitriev AP, Mikhailova MP, Yassievich IN (1987) Impact ionization in AIIIBV semiconductors in high electric fields. Phys Status Solidi B 140:9

    Article  ADS  Google Scholar 

  • Duke CB (1969) Tunneling in solids. Academic Press, New York

    Google Scholar 

  • Fischetti MV, Vandenberghe WG (2016) Advanced physics of electron transport in semiconductors and nanostructures. Springer, Switzerland

    Google Scholar 

  • Fowler RH, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc Lond A 119:173

    Article  ADS  MATH  Google Scholar 

  • Franz W (1958) Einfluß eines elektrischen Feldes auf eine optische Absorptionskante. Z Naturforsch A 13:484 (Effect of an electric field on the optical absorption edge, in German)

    Google Scholar 

  • Frenkel JI (1938) On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys Rev 54:647

    Article  ADS  Google Scholar 

  • Frova A, Handler P (1965) Franz-Keldysh effect in the space-charge region of a germanium pn junction. Phys Rev 137:A1857

    Article  ADS  Google Scholar 

  • Ganichev SD, Ziemann E, Prettl W, Istratov AA, Weber ER (1999) High field limitation of Poole-Frenkel emission caused by tunneling. Mater Res Soc Symp Proc 560:239

    Article  Google Scholar 

  • Grupen M (2011) Energy transport model with full band structure for GaAs electronic devices. J Comput Electron 10:271

    Article  Google Scholar 

  • Hartke JL (1968) The three-dimensional Poole-Frenkel effect. J Appl Phys 39:4871

    Article  ADS  Google Scholar 

  • Hayes W, Stoneham AM (1984) Defects and defect processes in nonmetallic solids. John Wiley & Sons, New York

    Google Scholar 

  • Hayes JR, Levi AFJ, Gossard AC, English JH (1986) Base transport dynamics in a heterojunction bipolar transistor. Appl Phys Lett 49:1481

    Article  ADS  Google Scholar 

  • Higman JM, Bude J, Hess K (1991) Electronic transport in semiconductors at high energy. Comput Phys Commun 67:93

    Article  ADS  MATH  Google Scholar 

  • Hill RM (1971) Poole-Frenkel conduction in amorphous solids. Philos Mag 23:59

    Article  ADS  Google Scholar 

  • Keldysh LV (1958) Influence of the lattice vibrations of a crystal on the production of electron-hole pairs in a strong electrical field. Sov Phys JETP 7:665

    Google Scholar 

  • Keldysh LV (1965) Concerning the theory of impact ionization in semiconductors. Sov Phys JETP 21:1135

    ADS  MathSciNet  Google Scholar 

  • Kuwamura Y, Yamada M (1996) Analysis of modified Franz-Keldysh effect under influence of electronic intraband relaxation phenomena. Jpn J Appl Phys 35:6117

    Article  ADS  Google Scholar 

  • Lautz G (1961) Elektrische Eigenschaften der Halbleiter bei tiefen Temperaturen. In: Sauter F (ed) Halbleiterprobleme, vol VI. Vieweg, Braunschweig, pp 21–117. (Electrical properties of semiconductors at low temperatures, in German)

    Google Scholar 

  • Maes W, De Meyer K, Van Overstraeten R (1999) Impact ionization in silicon: a review and update. Solid State Electron 33:705

    Article  ADS  Google Scholar 

  • Moll JL (1964) Physics of semiconductors. McGraw-Hill, New York

    MATH  Google Scholar 

  • Oppenheimer JR (1928) Three notes on the quantum theory of aperiodic effects. Phys Rev 31:66

    Article  ADS  MATH  Google Scholar 

  • Pai DM (1975) Electric-field-enhanced conductivity in solids. J Appl Phys 46:5122

    Article  ADS  Google Scholar 

  • Payne RT (1965) Phonon energies in germanium from phonon-assisted tunneling. Phys Rev 139:A570

    Article  ADS  Google Scholar 

  • Poole HH (1921) On the electrical conductivity of some dielectrics. Philos Mag 42:488

    Article  Google Scholar 

  • Ridley BK (1983) A model for impact ionisation in wide-gap semiconductors. J Phys C 16:4733

    Article  ADS  Google Scholar 

  • Satyanadh G, Joshi RP, Abedin N, Singh U (2002) Monte Carlo calculation of electron drift characteristics and avalanche noise in bulk InAs. J Appl Phys 91:1331

    Article  ADS  Google Scholar 

  • Schappe RS, Walker T, Anderson LW, Lin CC (1996) Absolute electron-impact ionization cross section measurements using a magneto-optical trap. Phys Rev Lett 76:4328

    Article  ADS  Google Scholar 

  • Sclar N, Burstein E (1957) Impact ionization of impurities in germanium. J Phys Chem Solids 2:1

    Article  ADS  Google Scholar 

  • Seraphin BO (1964) The effect of an electric field on the reflectivity of germanium. In: Hulin M (ed) Proc 7th Int Conf Phys Semicond. Dunod, Paris, pp 165–170

    Google Scholar 

  • Seraphin BO, Bottka N (1965) Franz-Keldysh effect of the refractive index in semiconductors. Phys Rev 139:A560

    Article  ADS  Google Scholar 

  • Shichijo H, Hess K (1981) Band-structure-dependent transport and impact ionization in GaAs. Phys Rev B 23:4197

    Article  ADS  Google Scholar 

  • Shockley W (1961) Problems related to p-n junctions in silicon. Solid State Electron 2:35

    Article  ADS  Google Scholar 

  • Smoliner J (1996) Tunnelling spectroscopy of low-dimensional states. Semicond Sci Technol 11:1

    Article  ADS  Google Scholar 

  • Stillman GE, Wolfe CM (1977) Avalanche photodiodes. In: Willardson RK, Beer AC (eds) Semiconductors and semimetals vol 12. Academic Press, New York, pp 291–393

    Chapter  Google Scholar 

  • Stoneham AM (1981) Non-radiative transitions in semiconductors. Rep Prog Phys 44:1251

    Article  ADS  Google Scholar 

  • Tsui DC (1982) Semiconductor tunneling. In: Moss TS, Paul W (eds) Handbook on semiconductors, Band theory and transport properties, vol 1. North-Holland Publ, Amsterdam, pp 661–688

    Google Scholar 

  • van Vechten JA (1980) A simple man’s view of the thermochemistry of semiconductors. In: Moss TS, Keller SP (eds) Handbook of Semiconductors. Vol 3: Materials properties and preparation. North Holland Publication, Amsterdam, pp 1–111

    Google Scholar 

  • Wolf EL (1975) Nonsuperconducting electron tunneling spectroscopy. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics vol 30. Academic Press, New York, pp 1–91

    Google Scholar 

  • Wolff PA (1954) Theory of electron multiplication in silicon and germanium. Phys Rev 95:1415

    Article  ADS  Google Scholar 

  • Yuan P, Hansing CC, Anselm KA, Lenox CV, Nie H, Holmes AL, Streetman BG, Campbell JC (2000) Impact ionization characteristics of III-V semiconductors for a wide range of multiplication region thicknesses. IEEE J Quantum Electron 36:198

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2017). Carrier Generation. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Carrier Generation
    Published:
    02 August 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_29-4

  2. Carrier Generation
    Published:
    28 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_29-3

  3. Carrier Generation
    Published:
    27 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_29-2

  4. Original

    Carrier Generation
    Published:
    17 April 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_29-1