Skip to main content

Lunar Magnetic Anomalies

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Lunar Science

Lunar magnetic anomalies are locally strong magnetic fields near the Moon caused by permanently magnetized material in its upper crust. They have scale sizes of up to hundreds of kilometers and were first detected by magnetometers on the Apollo 15 and 16 subsatellites in 1971 and 1972 (Coleman et al. 1972; Russell et al. 1975). Some of these anomalies probably have surface fields as strong as several thousand nanoTeslas (nT), but fields at orbital altitudes are typically no more than 5 or 10 nT. For comparison, the Earth’s surface field ranges from 25,000 to 65,000 nT (25 to 65 μT). Major applications of lunar magnetic anomalies include investigating: (a) the existence and origin of a former lunar internal magnetizing field; (b) the geologic origin of magnetic anomaly sources; and (c) the role of the solar wind ion bombardment in producing space weathering or optical maturation (darkening with time) of airless silicate bodies in the solar system. Most recently, lunar magnetic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baek S-M, Kim K-H, Garrick-Bethell I, Jin H (2019) Magnetic anomalies within the Crisium basin: magnetization directions, source depths, and ages. J Geophys Res Planets 124:223–242. https://doi.org/10.1029/2018JE005678

    Article  ADS  Google Scholar 

  • Blewett D, Coman I, Hawke B, Gillis-Davis J, Purucker M, Hughes C (2011) Lunar swirls: examining crustal magnetic anomalies and space weathering trends. J Geophys Res 116:E02002. https://doi.org/10.1029/2010JE003656

    Article  ADS  Google Scholar 

  • Coleman P Jr, Schubert G, Russell C, Sharp L (1972) Satellite measurements of the Moon’s magnetic field. Moon 4:419–429

    Article  ADS  Google Scholar 

  • Dalrymple G, Ryder G (1996) Argon-40/Argon-39 age spectra of Apollo 17 highlands breccia samples by laser step heating and the age of the Serenitatis basin. J Geophys Res 101:26069–26084

    Article  ADS  Google Scholar 

  • Denevi BW, Robinson MS, Boyd AK, Blewett DT, Klima RL (2016) The distribution and extent of lunar swirls. Icarus 273:53–67

    Article  ADS  Google Scholar 

  • Dyal P, Parkin C, Daily W (1974) Magnetism and the interior of the Moon. Rev Geophys Space Phys 12:568–591

    Article  ADS  Google Scholar 

  • Fischer-Gödde M, Becker H (2011) What is the age of the Nectaris basin? New Re-Os constraints for a pre-4.0 Ga bombardment history of the Moon. In: Lunar planetary science conference XLII, Abstract 1414. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Garrick-Bethell I, Kelley MR (2019) Reiner Gamma: a magnetized elliptical disk on the Moon. Geophys Res Lett 46:5065–5074. https://doi.org/10.1029/2019GL082427

    Article  ADS  Google Scholar 

  • Garrick-Bethell I, Weiss BP, Shuster DL, Buz J (2009) Early lunar magnetism. Science 323:356–359

    Article  ADS  Google Scholar 

  • Garrick-Bethell I, Head J III, Pieters C (2011) Spectral properties, magnetic fields, and dust transport at lunar swirls. Icarus 212:480–492

    Article  ADS  Google Scholar 

  • Gattacceca J, Boustie M, Hood L et al (2010) Can the lunar crust be magnetized by shock: experimental groundtruth. Earth Planet Sci Lett 299:42–53

    Article  ADS  Google Scholar 

  • Glotch T, Bandfield J, Lucey P, Hayne P, Greenhagen B, Arnold J, Ghent R, Paige D (2015) Formation of lunar swirls by magnetic field standoff of the solar wind. Nat Commun 6:6189. https://doi.org/10.1038/ncomms7189

    Article  ADS  Google Scholar 

  • Halekas J, Mitchell D, Lin R, Hood L et al (2001) Mapping of lunar crustal magnetic fields using Lunar Prospector electron reflectometer data. J Geophys Res 106:27841–27852

    Article  ADS  Google Scholar 

  • Halekas J, Lin R, Mitchell D (2003) Magnetic fields of lunar multi-ring impact basins. Meteorit Planet Sci 38:565–578

    Article  ADS  Google Scholar 

  • Hemingway D, Garrick-Bethell I (2012) Magnetic field direction and lunar swirl morphology: insights from Airy and Reiner Gamma. J Geophys Res 117:E10012. https://doi.org/10.1029/2012JE004165

    Article  ADS  Google Scholar 

  • Hemingway DJ, Tikoo SM (2018) Lunar swirl morphology constrains the geometry, magnetization, and origins of lunar magnetic anomalies. J Geophys Res Planets 123(8):2223–2241. https://doi.org/10.1029/2018JE005604

    Article  ADS  Google Scholar 

  • Hood L (2011) Central magnetic anomalies of Nectarian-aged lunar impact basins: probable evidence for an early core dynamo. Icarus 211:1109–1128

    Article  ADS  Google Scholar 

  • Hood L, Artemieva N (2008) Antipodal effects of lunar basin-forming impacts: initial 3D simulations and comparisons with observations. Icarus 193:485–502

    Article  ADS  Google Scholar 

  • Hood L, Schubert G (1980) Lunar magnetic anomalies and surface optical properties. Science 208:49–51

    Article  ADS  Google Scholar 

  • Hood LL, Williams CR (1989) The lunar swirls–distribution and possible origins. In: Proceedings of 19th lunar and planetary science conference, pp 99–113. Lunar and Planetary Institute, Houston

    Google Scholar 

  • Hood L, Coleman P Jr, Russell C, Wilhelms D (1979) Lunar magnetic anomalies detected by the Apollo subsatellite magnetometers. Phys Earth Planet Interiors 20:291–311

    Article  ADS  Google Scholar 

  • Hood L, Zakharian A, Halekas J et al (2001) Initial mapping and interpretation of lunar crustal magnetic anomalies using Lunar Prospector magnetometer data. J Geophys Res 106:27825–27839

    Article  ADS  Google Scholar 

  • Hood L, Richmond NC, Spudis PD (2013) Origin of strong lunar magnetic anomalies: further mapping and examinations of LROC imagery in regions antipodal to young large impact basins. J Geophys Res Planets 118(6):1265–1284. https://doi.org/10.1002/jgre.20078

    Article  ADS  Google Scholar 

  • Hood L, Torres CB, Oliveira JS, Wieczorek MA, Stewart ST (2021a) A new large-scale map of the lunar crustal magnetic field and its interpretation. J Geophys Res Planets 126:e2020JE006667. https://doi.org/10.1029/2020JE006667

    Article  ADS  Google Scholar 

  • Hood L, Oliveira JS, Andrews-Hanna J, Wieczorek MA, Stewart ST (2021b) Magnetic anomalies in five lunar impact basins: implications for impactor trajectories and inverse modeling. J Geophys Res Planets 126:e2020JE006668. https://doi.org/10.1029/2020JE006668

    Article  ADS  Google Scholar 

  • Korotev RL (1987) The meteorite component of Apollo 16 noritic impact melt breccias. Proc. 17th Lunar & Planet. Sci. Conf., Part 2. J Geophys Res 92:E491–E512

    Article  Google Scholar 

  • Korotev RL (2000) The great lunar hot spot and the composition and origin of the Apollo mafic (“LKFM”) impact-melt breccias. J Geophys Res 105:4317–4345

    Article  ADS  Google Scholar 

  • Kramer G, Besse S, Dhingra D et al (2011) M3 spectral analysis of lunar swirls and the link between optical maturation and surface hydroxyl formation at magnetic anomalies. J Geophys Res 116:E00G18. https://doi.org/10.1029/2010JE003729

    Article  Google Scholar 

  • Lin RP, Anderson KA, Hood LL (1988) Lunar surface magnetic field concentrations antipodal to young large impact basins. Icarus 74:529–541

    Article  ADS  Google Scholar 

  • Maxwell RE, Garrick-Bethell I (2020) Evidence for an ancient near-equatorial lunar dipole from higher precision inversions of crustal magnetization. J Geophys Res Planets 125:e2020JE006567. https://doi.org/10.1029/2020JE006567

    Article  ADS  Google Scholar 

  • Mitchell D, Halekas J, Lin R, Frey S et al (2008) Global mapping of lunar crustal magnetic fields by Lunar Prospector. Icarus 194:401–409

    Article  ADS  Google Scholar 

  • Moore HJ, Hodges C, Scott D (1974) Multi-ringed basins – illustrated by Orientale and associated features. In: Hinners NW (eds) Proceedings of 5th Lunar and planetary science conference, Geochimica et Cosmochimica Acta, pp 71–100, Supplement 6

    Google Scholar 

  • Neish CD, Blewett DT, DBJ B, Lawrence SJ, Mechtley M, Thomson BJ, The Mini-RF Team (2011) The surficial nature of lunar swirls as revealed by the Mini-RF instrument. Icarus 215:186–196

    Article  ADS  Google Scholar 

  • Oliveira JS, Wieczorek MA (2017) Testing the axial dipole hypothesis for the Moon by modeling the direction of crustal magnetization. J Geophys Res Planets 122:383–399. https://doi.org/10.1002/2016JE005199

    Article  ADS  Google Scholar 

  • Oliveira JS, Wieczorek MA, Kletetschka G (2017) Iron abundances in lunar impact basin melt sheets from orbital magnetic field data. J Geophys Res Planets 122:2429–2444. https://doi.org/10.1002/2017JE005397

    Article  ADS  Google Scholar 

  • Oran R, Weiss BP, Shprits Y, Miljkovic K, Tóth G (2020) Was the moon magnetized by impact plasmas? Sci Adv 6:eabb1475, 11 pp

    Article  ADS  Google Scholar 

  • Purucker M, Nicholas J (2010) Global spherical harmonic models of the internal magnetic field of the Moon based on sequential and coestimation approaches. J Geophys Res 115:E12007. https://doi.org/10.1029/2010JE003650

    Article  ADS  Google Scholar 

  • Purucker M, Head J III, Wilson L (2012) Magnetic signature of the lunar South Pole-Aitken basin: character, origin, and age. J Geophys Res 117:E05001. https://doi.org/10.1029/2011JE003922

    Article  ADS  Google Scholar 

  • Ravat D, Purucker ME, Olsen N (2020) Lunar magnetic field models from Lunar Prospector and SELENE/Kaguya along-track magnetic field gradients. J Geophys Res Planets 125:e2019JE006187. https://doi.org/10.1029/2019JE006187

    Article  ADS  Google Scholar 

  • Richmond N, Hood L (2008) A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data. J Geophys Res 113:E02010. https://doi.org/10.1029/2007JE002933

    Article  ADS  Google Scholar 

  • Richmond N, Hood L, Halekas J et al (2003) Correlation of a strong lunar magnetic anomaly with a high albedo region of the Descartes mountains. Geophys Res Lett 30(7):1395. https://doi.org/10.1029/2003GL016938

    Article  ADS  Google Scholar 

  • Richmond NC, Hood LL, Mitchell DL, Lin RP, Acuña MH, Binder AB (2005) Correlations between magnetic anomalies and surface geology antipodal to lunar impact basins. J Geophys Res 110:E05011. https://doi.org/10.1029/2005JE002405

    Article  ADS  Google Scholar 

  • Russell CT, Coleman PJ, Jr., Fleming BK, Hilburn L, Ioannidis G, Lichtenstein BR, Schubert G (1975) The fine scale lunar magnetic field. Proc. Lunar Sci. Conf. 6th, 2955–2969, Lunar and Planetary Institute, Houston, Texas, USA

    Google Scholar 

  • Ryder G (2002) Mass flux in the ancient earth-moon system and benign implications for the origin of life on Earth. J Geophys Res 107(E4):5022. https://doi.org/10.1029/2001JE001583

    Article  Google Scholar 

  • Scheinberg AL, Soderlund KM, Elkins-Tanton LT (2018) A basal magma ocean dynamo to explain the early lunar magnetic field. Earth Planet Sci Lett 492:144–151

    Article  ADS  Google Scholar 

  • Schultz P, Srnka L (1980) Cometary collisions on the Moon and Mercury. Nature 284:22–26

    Article  ADS  Google Scholar 

  • Shea E, Weiss B, Cassata W et al (2012) A long-lived lunar core dynamo. Science 335:453–456

    Article  ADS  Google Scholar 

  • Starukhina I, Shkuratov Y (2004) Swirls on the Moon and Mercury: meteoroid swarm encounters as a formation mechanism. Icarus 167:136–147

    Article  ADS  Google Scholar 

  • Strangway D, Sharpe H, Gose W et al (1973) Lunar magnetic anomalies and the Cayley formation. Nature 246:112–114

    ADS  Google Scholar 

  • Suavet C, Weiss B, Cassata W et al (2013) Persistence and origin of the lunar core dynamo. Proc Natl Acad Sci 110:8453–8458

    Article  ADS  Google Scholar 

  • Tikoo SM, Weiss BP, Cassata WS, Shuster DL, Gattacceca J, Lima EA, Suavet C, Nimmo F, Fuller MD (2014) Decline of the lunar core dynamo. Earth Planet Sci Lett 404:89–97

    Article  ADS  Google Scholar 

  • Tsunakawa H, Takahashi F, Shimizu H, Shibuya H, Matsushima M (2014) Regional mapping of the lunar magnetic anomalies at the surface: method and its application to strong and weak magnetic anomaly regions. Icarus 228:35–53. https://doi.org/10.1016/j.icarus.2013.09.026

    Article  ADS  Google Scholar 

  • Tsunakawa H, Takahashi F, Shimizu H, Shibuya H, Matsushima M (2015) Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations. J Geophys Res Planets 120:1160–1185

    Article  ADS  Google Scholar 

  • Weiss BP, Tikoo S (2014) The lunar dynamo. Science 346:1198–1209

    Article  ADS  Google Scholar 

  • Wieczorek M, Weiss B, Stewart S (2012) An impactor origin for lunar magnetic anomalies. Science 335:1212–1215

    Article  ADS  Google Scholar 

  • Wieczorek M, Weiss BP, Breuer D, Cébron D, Fuller M, Garrick-Bethell I, Gattacceca J, Halekas JS et al (2021) Lunar magnetism. Rev Mineral Geochem 87: in press

    Google Scholar 

  • Wilhelms D (1984) Moon. In: Carr M (ed) The geology of the terrestrial planets. NASA Science and Technology Information Branch, Washington, DC, pp 107–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lon L. Hood .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hood, L.L. (2021). Lunar Magnetic Anomalies. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_4-3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_4-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Lunar Magnetic Anomalies
    Published:
    24 November 2021

    DOI: https://doi.org/10.1007/978-3-319-05546-6_4-3

  2. Lunar Magnetic Anomalies
    Published:
    16 March 2015

    DOI: https://doi.org/10.1007/978-3-319-05546-6_4-2

  3. Original

    Lunar Magnetic Anomalies
    Published:
    19 November 2014

    DOI: https://doi.org/10.1007/978-3-319-05546-6_4-1