Skip to main content

Positive Inotropic Activity (Cardiac Glycosides)

  • Reference work entry
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

Biological standardization of cardiac glycosides was necessary as long as the drugs used in therapy were plant extracts or mixtures of various glycosides. They were standardized in units of an international standard. Some of the pharmacological methods used for these purposes and adopted by many pharmacopoeias have nowadays historical interest only. This holds true for the frog method and the pigeon method (Burn et al. 1950).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

General Considerations

  • Bahrmann H, Greeff K (1981) Evaluation of cardiac glycosides in the intact animal. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 118–152

    Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1950) Digitalis, strophanthus, and squill. In: Biological standardization. Oxford University Press, London/New York/Toronto, pp 294–310. Chapter XIII

    Google Scholar 

  • Cattell M, Gold H (1938) Influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J Pharmacol Exp Ther 62:116–125

    Google Scholar 

  • de Lind van Wijngaarden C (1926) Untersuchungen über die Wirkungsstärke von Digitalispräparaten. II Mitteilung: Ãœber die Genauigkeit der Dosiseichung an der Katze. Arch Exp Pathol Pharmakol 113:40–58

    Google Scholar 

  • Di Palma JR (1964) Animal techniques for evaluating digitalis and its derivatives. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 154–159. Chapter 15

    Google Scholar 

  • Feldman AM (1993) Classification of positive inotropic agents. J Am Coll Cardiol 22:1223–1227

    Article  CAS  PubMed  Google Scholar 

  • Greef K (1963) Zur Pharmakologie der herzwirksamen Glykoside. Klin Physiol 1:340–370

    Google Scholar 

  • Greef K, Hafner D (1981) Evaluation of cardiac glycosides in isolated heart preparations other than papillary muscle. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 161–184

    Google Scholar 

  • Grupp G (1987) Selective updates on mechanisms of action of positive inotropic agents. Mol Cell Biochem 76:97–112

    Article  CAS  PubMed  Google Scholar 

  • Gundert-Remy U, Weber E (1981) ATPase for the determination of cardiac glycosides. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 83–94

    Google Scholar 

  • Hanzlik JP (1929) New method of estimating the potency of digitalis in pigeons: Pigeon emesis. J Pharmacol Exp Ther 35:363–391

    CAS  Google Scholar 

  • Hatcher RA, Brody JG (1910) The biological standardization of drugs. Am J Pharm 82:360–372

    Google Scholar 

  • Knaffl-Lenz E (1926) The physiological assay of preparations of digitalis. J Pharmacol Exp Ther 29:407–425

    Google Scholar 

  • Reiter M (1981) The use of the isolated papillary muscle for the evaluation of positive inotropic effects of cardioactive steroids. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 153–159

    Google Scholar 

  • Scholz H (1984) Inotropic drugs and their mechanisms of action. J Am Coll Cardiol 4:389–397

    Article  CAS  PubMed  Google Scholar 

Ouabain Binding

  • Erdmann E, Schoner W (1973) Ouabain-receptor interactions in (Na++K+)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta 307:386–398

    Article  CAS  PubMed  Google Scholar 

  • Erdmann E, Schoner W (1974) Ouabain-receptor interactions in (Na++K+)-ATPase preparations. IV. The molecular structure of different cardioactive steroids and other substances and their affinity to the glycoside receptor. Naunyn Schmiedebergs Arch Pharmacol 283:335–356

    Article  CAS  PubMed  Google Scholar 

  • Erdmann E, Philipp G, Scholz H (1980) Cardiac glycoside receptor, (Na++K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol 29:3219–3229

    Google Scholar 

  • Lelievre LG, Charlemagne D, Mouas C, Swynghedauw B (1986) Respective involvements of high- and low-affinity digitalis receptors in the inotropic response of isolated rat heart to ouabain. Biochem Pharmacol 35:3449–3455

    Google Scholar 

  • Maixent JM, Charlemagne D, de la Chapelle B, Lelievre LG (1987a) Two Na, K-ATPase isoenzymes in canine cardiac myocytes molecular basis of inotropic and toxic effects of digitalis. J Biol Chem 262:6842–6848

    CAS  PubMed  Google Scholar 

  • Maixent JM, Gerbi A, Berrebi-Bertrand I, Correa PE, Genain G, Baggioni A (1993) Cordil reversibly inhibits the Na,K-ATPase from outside the cell membrane. Role of K-dependent dephosphorylation. J Recept Res 13:1083–1092

    Google Scholar 

Influence on Na+/K+ ATPase

  • Anner B, Moosmayer M (1974) Rapid determination of inorganic phosphate in biological systems by a highly sensitive photometric method. Anal Biochem 65:305–309

    Article  Google Scholar 

  • Akera T, Brody T (1978) The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol Rev 29:197–201

    Google Scholar 

  • Belz GG (1981) Rubidium uptake in erythrocytes. In: Handbook of experimental pharmacology, vol 56. Springer, Berlin/Heidelberg/New York, pp 95–113

    Google Scholar 

  • Borsch-Galetke E, Dransfeld H, Greef K (1972) Specific activity of Na++K+- activated ATPase in rats and guinea pigs with hypoadrenalism. Naunyn-Schmiedebergs Arch Pharmacol 274:74–80

    Article  CAS  PubMed  Google Scholar 

  • Brooker G, Jelliffe RW (1972) Serum cardiac glycoside assay based upon displacement of 3H-ouabain from Na-K ATPase. Circulation 45:20–36

    Article  CAS  PubMed  Google Scholar 

  • Burnett GH, Conklin RL (1968) The enzymatic assay of plasma digitoxin levels. J Lab Clin Med 71:1040–1049

    CAS  PubMed  Google Scholar 

  • Charlemagne D, Maixent JM, Preteseille M, Lelievre LG (1986) Ouabain binding sites and (Na+, K+)-ATPase activity in rat cardiac hypertrophy. Expression of the neonatal forms. J Biol Chem 261:185–189

    CAS  PubMed  Google Scholar 

  • Erdmann E, Philipp G, Scholz H (1980) Cardiac glycoside receptor, (Na++K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol 29:3219–3229

    Google Scholar 

  • Gundert-Remy U, Weber E (1981) ATPase for the determination of cardiac glycosides. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 83–94

    Google Scholar 

  • Lelievre LG, Maixent G, Lorente P, Mouas C, Charlemagne D, Swynghedauw B (1986) Prolonged responsiveness to ouabain in hypertrophied rat heart: physiological and biochemical evidence. Am J Physiol 250:H923–H931

    Google Scholar 

  • Lindner E, Schöne HH (1972) Änderungen der Wirkungsdauer und Wirkungsstärke von Herzglykosiden durch Abwandlungen der Zucker. Arzneim Forsch/Drug Res 22:428–435

    Google Scholar 

  • Lindner E, von Reitzenstein G, Schöne HH (1979) Das 14,15-β-oxido-analoge des proscillaridins (HOE 040). Arzneim Forsch/Drug Res 29:221–226

    Google Scholar 

  • Lowenstein JM (1965) A method for measuring plasma levels of digitalis glycosides. Circulation 31:228–233

    Article  CAS  PubMed  Google Scholar 

  • Maixent JM, Charlemagne D, de la Chapelle B, Lelievre LG (1987) Two Na,K-ATPase isoenzymes in canine cardiac myocytes. Molecular basis of inotropic and toxic effects of digitalis. J Biol Chem 262:6842–6848

    Google Scholar 

  • Maixent JM, Fénard S, Kawamoto RM (1991) Tissue localization of Na, K-ATPase isoenzymes by determination of their profile of inhibition with ouabain, digoxin, digitoxigenin and LND 796, a new aminosteroid cardiotonic. J Recept Res 11:687–698

    CAS  PubMed  Google Scholar 

  • Maixent JM, Gerbi A, Berrebi-Bertrand I, Correa PE, Genain G, Baggioni A (1993) Cordil reversibly inhibits the Na,K-ATPase from outside the cell membrane. Role of K-dependent dephosphorylation. J Recept Res 13:1083–1092

    Google Scholar 

  • Maixent JM, Gerbi A, Barbey O, Fenard S, Kawamoto RM, Baggioni A (1995) Relation of plasma concentrations to positive inotropic effect of intravenous administration of cordil in dogs. Pharm Pharmacol Lett 1:1–4

    Google Scholar 

  • Mansier P, Lelievre LG (1982) Ca2+-free perfusion of rat heart reveals a (Na++K+)ATPase form highly sensitive to ouabain. Nature 300:535–537

    Article  CAS  PubMed  Google Scholar 

  • Marcus FI, Ryan JN, Stafford MG (1975) The reactivity of derivatives of digoxin and digitoxin as measured by the Na-K-ATPase displacement assay and by radioimmunoassay. J Lab Clin Med 85:610–620

    CAS  PubMed  Google Scholar 

  • McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The Cytosensor microphysiometer. Science 257:1906–1912

    Article  CAS  PubMed  Google Scholar 

  • Miller DL, Olson JC, Parce JW, Owicki JC (1993) Cholinergic stimulation of the Na+/K+ adenosine triphosphatase as revealed by microphysiometry. Biophys J 64:813–823

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noel F, Godfraind T (1984) Heterogeneity of ouabain specific binding sites and (Na++K+)-ATPase inhibition in microsomes from rat heart. Biochem Pharmacol 33:47–53

    Article  CAS  PubMed  Google Scholar 

  • Schoner W, von Illberg C, Kramer R, Seubert W (1967) On the mechanism of Na+- and K+- stimulated hydrolysis of adenosine triphosphate. Eur J Biochem 1:334–343

    Article  CAS  PubMed  Google Scholar 

  • Schwarz AK, Nagano K, Nakao M, Lindenmayer GE, Allen JC, Matsoi HM (1971) The sodium- and potassium activated adenosine-triphosphatase system. In: Schwartz A (ed) Methods in pharmacology, vol 1. Appleton-Century-Crofts, Meredith Corporation, New York, pp 361–388

    Google Scholar 

  • Skou JC, Esmann M (1992) The Na2K-ATPase. J Bioenerg Biomembr 24:249–261

    CAS  PubMed  Google Scholar 

  • Thomas R, Allen J, Pitts BJR, Schwartz A (1974) Cardenolide analogs. An explanation for the unusual properties of AY 22241. Eur J Pharmacol 53:227–237

    Article  Google Scholar 

Isolated Cat Papillary Muscle

  • Anderson WG (1983) An improved model for assessment of positive inotropic activity in vitro. Drug Dev Res 3:443–451

    Article  CAS  Google Scholar 

  • Böhm M, Diet F, Pieske B, Erdmann E (1989) Screening of positive inotropic agents in isolated cardiac preparations from different sources. J Pharmacol Methods 21:33–44

    Article  PubMed  Google Scholar 

  • Brown TG, Lands AM (1964) Cardiovascular activity of sympathomimetic amines. In: Laurence DR, Bacharach AL (eds) Pharmacometrics, vol 1. Academic, New York, pp 353–368

    Google Scholar 

  • Cattell M, Gold H (1938) Influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J Pharmacol Exp Ther 62:116–125

    Google Scholar 

  • Di Palma JR (1964) Animal techniques for evaluating digitalis and its derivatives. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 154–159. Chapter 15

    Google Scholar 

  • Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in pharmacology, vol 5: Myocardial biology. Plenum Press, New York/London, pp 111–128

    Chapter  Google Scholar 

  • Labow RS, Desjardins S, Keon WJ (1991) Validation of a human atrial trabecular preparation for evaluation of inotropic substances. J Pharmacol Methods 26:257–268

    Article  CAS  PubMed  Google Scholar 

  • Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43:313–319

    Google Scholar 

  • Reiter M (1981) The use of the isolated papillary muscle for the evaluation of positive inotropic effects of cardioactive steroids. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 153–159

    Google Scholar 

  • Turner RA (1965) Cardiotonic agents. In: Screening methods in pharmacology. Academic, New York/London, pp 203–209

    Chapter  Google Scholar 

Isolated Hamster Cardiomyopathic Heart

  • Jasmin G, Solymoss B, Proscheck L (1979) Therapeutic trials in hamster dystrophy. Ann NY Acad Sci 317:338–348

    Article  CAS  PubMed  Google Scholar 

  • Ottenweller JE, Tapp WN, Natelson BH (1987) The effect of chronic digitalis therapy on the course of heart failure and on endocrine function in cardiomyopathic hamsters. Res Commun Chem Pathol Pharmacol 58:413–416

    CAS  PubMed  Google Scholar 

  • Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43(I):313–319

    Google Scholar 

  • Weishaar RE, Burrows SD, Kim SN, Kobylarz-Singer DC, Andrews LK, Quade MM, Overhiser R, Kaplan HR (1987) Protection of the failing heart: comparative effects of chronic administration of digitalis and diltiazem on myocardial metabolism in the cardiomyopathic hamster. J Appl Cardiol 2:339–360

    CAS  Google Scholar 

Potassium Loss from the Isolated Guinea Pig Heart

  • Greef K, Hafner D (1981) Evaluation of cardiac glycosides in isolated heart preparations other than papillary muscle. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 161–184

    Google Scholar 

  • Lindner E, Hajdu P (1968) Die fortlaufende Messung des Kaliumverlustes des isolierten Herzens zur Bestimmung der Wirkungsstärke digitalisartiger Körper. Arch Int Pharmacodyn 175:365–372

    CAS  PubMed  Google Scholar 

Cardiac Toxicity in Cats (Hatcher’s Method)

  • Bahrmann H, Greeff K (1981b) Evaluation of cardiac glycosides in the intact animal. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 118–152

    Google Scholar 

  • Burn JH, Finney DJ, Goodwin LG (1950) Digitalis, strophanthus, and squill. In: Biological standardization. Oxford University Press, London/New York/Toronto, pp 294–310. Chapter XIII

    Google Scholar 

  • de Lind van Wijngaarden C (1926) Untersuchungen über die Wirkungsstärke von Digitalispräparaten. II Mitteilung: Ãœber die Genauigkeit der Dosiseichung an der Katze. Arch Exp Pathol Pharmakol 113:40–58

    Google Scholar 

  • Dörner J (1955) Zur Frage der Beziehungen zwischen Strophanthintoxicität und Größe der Coronardurchblutung. Arch Exp Pathol Pharmakol 226:152–162

    Article  Google Scholar 

  • Hatcher RA, Brody JG (1910) The biological standardization of drugs. Am J Pharm 82:360–372

    Google Scholar 

  • Knaffl-Lenz E (1926) The physiological assay of preparations of digitalis. J Pharmacol Exp Ther 29:407–425

    Google Scholar 

Decay Rate and Enteral Absorption Rate of Cardiac Glycosides

  • Bahrmann H, Greeff K (1981) Evaluation of cardiac glycosides in the intact animal. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin, pp 118–152

    Google Scholar 

  • Kleemann A, Lindner E, Engel J (1985) Herzglykoside und deren Aglykone. In: Arzneimittel, Fortschritte 1972–1985. Verlag Chemie, Weinheim, pp 213–226

    Google Scholar 

  • Lindner E, Schöne HH (1972) Änderungen der Wirkungsdauer und Wirkungsstärke von Herzglykosiden durch Abwandlungen der Zucker. Arzneim Forsch/Drug Res 22:428–435

    Google Scholar 

  • Lindner E, von Reitzenstein G, Schöne HH (1979) Das 14,15-β-oxido-analoge des proscillaridins (HOE 040). Arzneim Forsch/Drug Res 29:221–226

    Google Scholar 

  • Maixent JM, Bertrand IB, Lelièvre LG, Fénard S (1992) Efficacy and safety of the novel Na+, K + -ATPase inhibitor 20R 14β-amino 3-β-rhamnosyl 5β-pregnan 20β-ol in a dog model of heart failure. Arzneim Forsch/Drug Res 42:1301–1305

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gralinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gralinski, M., Neves, L.A.A., Tiniakova, O. (2016). Positive Inotropic Activity (Cardiac Glycosides). In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_9

Download citation

Publish with us

Policies and ethics