Skip to main content

Abstract

The term “hypnotic” has to be defined. In man, the purpose of taking hypnotics is to obtain a “normal” night’s sleep from which the patient can be aroused without any subsequent hangover. In animal experiments, the term “hypnotic” has been applied to a much deeper stage of central depression of drug induced unconsciousness associated with loss of muscle tone and of righting reflexes. Therefore, most of the pharmacological models are questionable in regard to their predictivity to find an ideal hypnotic for human therapy. Many of the pharmacological tests are based on the potentiation of sleeping time induced by barbiturates or other sedative agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

Potentiation of Hexobarbital Sleeping Time

  • Balazs T, Grice HC (1963) The relationship between liver necrosis and pentobarbital sleeping time in rats. Toxicol Appl Pharmacol 5:387–391

    Article  CAS  Google Scholar 

  • Fujimori H (1965) Potentiation of barbital hypnosis as an evaluation method for central nervous system depressants. Psychopharmacologia 7:374–378

    Article  CAS  PubMed  Google Scholar 

  • Harris LS, Uhle FC (1961) Enhancement of amphetamine stimulation and prolongation of barbiturate depression by a substituted pyrid[3,4-b]indole derivative. J Pharmacol Exp Ther 132:251–257

    CAS  PubMed  Google Scholar 

  • Lim RKS (1964) Animal techniques for evaluating hypnotics. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publication, Chicago, pp 291–297

    Google Scholar 

  • Mason DFJ (1964) Hypnotics and general anaesthetics. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 261–286

    Chapter  Google Scholar 

  • Remmer H (1972) Induction of drug metabolizing enzyme system in the liver. Eur J Clin Pharmacol 5:116–136

    Article  CAS  Google Scholar 

  • Simon P, Chermat R, Doaré L, Bourin M, Farinotti R (1982) Interactions imprévues de divers psychotropes avec les effets du barbital et du pentobarbital chez la souris. J Pharmacol (Paris) 13:241–252

    CAS  Google Scholar 

Experimental Insomnia in Rats

  • Gardner CR, James V (1987) Activity of some benzodiazepine receptor ligands with reduced sedative and muscle relaxant properties on stress-induced electrocorticogram arousal in sleeping rats. J Pharmacol Methods 18:47–54

    Article  CAS  PubMed  Google Scholar 

  • James GWL, Piper DC (1978) A method for evaluating potential hypnotic compounds in rats. J Pharmacol Methods 1:145–154

    Article  CAS  Google Scholar 

  • Laval J, Stenger A, Briley M (1991) Effect of anxiolytic and hypnotic drugs on sleep circadian rhythms in the rat. In: Briley M, File SE (eds) New concepts in anxiety. McMillan Press, London, pp 338–346

    Google Scholar 

EEG Registration in Conscious Cats

  • Baust W, Heinemann H (1967) The role of the baroreceptors and of blood pressure in the regulation of sleep and wakefulness. Exp Brain Res 3:12–24

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto T, Hamada C, Wada T, Fukuda N (1992) Comparative study on the behavioral and EEG changes induced by diazepam. buspirone and a novel anxioselective anxiolytic, DN-2327, in the cat. Neuropsychobiology 26:89–99

    Article  CAS  PubMed  Google Scholar 

  • Heinemann H, Stock G (1973) Chlordiazepoxide and its effect on sleep-wakefulness behavior in unrestrained cats. Arzneim Forsch/Drug Res 23:823–825

    CAS  Google Scholar 

  • Heinemann H, Hartmann A, Sturm V (1968) Der Einfluß von Medazepam auf die Schlaf-Wach-Regulation von wachen, unnarkotisierten Katzen. Arzneim Forsch/Drug Res 18:1557–1559

    CAS  Google Scholar 

  • Heinemann H, Hartmann A, Stock G, Sturm V (1970) Die Wirkungen von Medazepam auf Schwellen subcorticaler, limbischer Reizantworten gemessen an unnarkotisierten, frei beweglichen Katzen. Arzneim Forsch/Drug Res 20:413–415

    CAS  Google Scholar 

  • Hirotsu I, Kihara T, Nakamura S, Hattori Y, Hatta M, Kitakaze Y, Takahama K, Hashimoto Y, Miyata T, Ishihara T, Satoh F (1988) General pharmacological studies on N-(2,6-dimethyl-phenyl)-8-pyrrolizidineacetamide hydrochloride hemihydrate. Arzneim Forsch/Drug Res 38:1398–1410

    CAS  Google Scholar 

  • Holm E, Staedt U, Heep J, Kortsik C, Behne F, Kaske A, Mennicke I (1991) Untersuchungen zum Wirkungsprofil von D, L-Kavain. Zerebrale Angriffsorte und Schlaf-Wach-Rhythmus im Tierexperiment. Arzneim Forsch/Drug Res 41:673–683

    CAS  Google Scholar 

  • Jones RD, Greufe NP (1994) A quantitative electroencephalographic method for xenobiotic screening in the canine model. J Pharmacol Toxicol Methods 31:233–238

    Article  CAS  PubMed  Google Scholar 

  • Krijzer F, van der Molen R, Olivier B, Vollmer F (1991) Antidepressant subclassification based on the quantitatively analyzed electrocorticogram of the rat. In: Olivier B, Mos J, Slangen JL (eds) Animal models in psychopharmacology, Advances in pharmacological sciences. Birkhäuser Verlag, Basel, pp 237–241

    Chapter  Google Scholar 

  • Kuhn FJ, Schingnitz G, Lehr E, Montagna E, Hinzen HD, Giachetti A (1988) Pharmacology of WEB 1881-FU, a central cholinergic agent, which enhances cognition and cerebral metabolism. Arch Int Pharmacodyn 292:13–34

    CAS  PubMed  Google Scholar 

  • Lozito RJ, La Marca S, Dunn RW, Jerussi TP (1994) Single versus multiple infusions of fentanyl analogues in a rat EEG model. Life Sci 55:1337–1342

    Article  CAS  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  CAS  PubMed  Google Scholar 

  • Ongini E, Parravicini L, Bamonte F, Guzzon V, Iorio LC, Barnett A (1982) Pharmacological studies with Quazepam, a new benzodiazepine hypnotic. Arzneim Forsch/Drug Res 32:1456–1462

    CAS  Google Scholar 

  • Rinaldi-Carmona M, Congy C, Santucci V, Simiand J, Gautret B, Neliat G, Labeeuw B, Le Fur G, Soubrie P, Breliere JC (1929) Biochemical and pharmacological properties of SR 46349B, a new potent and selective 5-hydroxytryptamine2 receptor antagonist. J Pharmacol Exp Ther 262:759–768

    Google Scholar 

  • Ruckert RT, Johnson DN, Robins AH (1983) Effects of antihistaminic agents on sleep pattern in cats: a new method for detecting sedative potential. Pharmacologist 25:180

    Google Scholar 

  • Sarkadi A, Inczeffy Z (1996) Simultaneous quantitative evaluation of visual-evoked responses and background EEG activity in rat: normative data. J Pharmacol Toxicol Methods 35:145–151

    Article  CAS  PubMed  Google Scholar 

  • Schallek W, Kuehn A (1965) Effects of benzodiazepines on spontaneous EEG and arousal responses of cats. Prog Brain Res 18:231–236

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Shingu K, Murakawa M, Adachi T, Osawa M, Nakao S, Mori K (1994) Tetraphasic actions of local anesthetics on central nervous system electrical activities in cats. Reg Anesth 19:255–263

    CAS  PubMed  Google Scholar 

  • Shouse MN, Siegel JM, Wu MF, Szymusiak R, Morrison AR (1989) Mechanisms of seizure suppression during rapid-eye-movement (REM) sleep in cats. Brain Res 505:271–282

    Article  CAS  PubMed  Google Scholar 

  • Sommerfelt L, Ursin R (1991) Behavioral, sleep-waking and EEG power spectral effects following the two specific 5-HT uptake inhibitors zimeldine and alaproclate in cats. Behav Brain Res 45:105–115

    Article  CAS  PubMed  Google Scholar 

  • Tobler I, Scherschlicht R (1990) Sleep and EEG slow-wave activity in the domestic cat: effect of sleep deprivation. Behav Brain Res 37:109–118

    Article  CAS  PubMed  Google Scholar 

  • Wallach MB, Rogers C, Dawber M (1976) Cat sleep: a unique first night effect. Brain Res Bull 1:425–427

    Article  CAS  PubMed  Google Scholar 

  • Wetzel W (1985) Effects of nootropic drugs on the sleep-waking pattern of the rat. Biomed Biochim Acta 44:1211–1217

    CAS  PubMed  Google Scholar 

  • Yamagushi N, Ling GM, Marczynski TJ (1964) Recruiting responses observed during wakefulness and sleep in unanesthetized chronic cats. Electroencephalogr Clin Neurophysiol 17:246–254

    Article  Google Scholar 

Automated Rat Sleep Analysis System

  • De Boer T, Ruigt GSF (1995) The selective α2-adrenoceptor antagonist mirtazapine (Org 3770) enhances noradrenergic and 5-HT1A-mediated serotonergic transmission. CNS Drugs 4(Suppl 1):29–38

    Article  Google Scholar 

  • Fairchild MD, Jenden DJ, Mickey MR (1969) Discrimination of behavioral state in the cat utilizing long-term EEG frequency analysis. Clin Neurophysiol 27:503–513

    Article  CAS  Google Scholar 

  • Fairchild MD, Jenden DJ, Mickey MR (1971) Quantitative analysis of some drug effects on the EEG by long-term frequency analysis. Proc West Pharmacol Soc 14:135–140

    CAS  Google Scholar 

  • Fairchild MD, Jenden DJ, Mickey MR (1975) An application of long-term frequency analysis in measuring drug-specific alterations in the EEG of the cat. Electroencephalogr Clin Neurophysiol 38:337–348

    Article  CAS  PubMed  Google Scholar 

  • Ruigt GSF, van Proosdij JN (1990) Antidepressant characteristics of Org 3770, Org 4428 and Org 9768 on rat sleep. Eur J Pharmacol 183:1467–1468

    Article  Google Scholar 

  • Ruigt GSF, van Proosdij JN, van Delft AML (1989a) A large scale, high resolution, automated system for rat sleep staging. I. Methodology and technical aspects. Electroencephalogr Clin Neurophysiol 73:52–64

    Article  CAS  PubMed  Google Scholar 

  • Ruigt GSF, van Proosdij JN, van Wezenbeek LACM (1989b) A large scale, high resolution, automated system for rat sleep staging. II. Validation and application. Electroencephalogr Clin Neurophysiol 73:64–71

    Article  CAS  PubMed  Google Scholar 

  • Ruigt GSF, Engelen S, Gerrits A, Verbon F (1993) Computerbased prediction of psychotropic drug classes based on a discriminant analysis of drug effects on rat sleep. Neuropsychobiology 28:138–153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Kallman, M.J. (2016). Hypnotic Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_29

Download citation

Publish with us

Policies and ethics