Skip to main content

Effects on Behavior and Muscle Coordination

  • Reference work entry
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

The effects of drugs on the central and peripheral nervous systems can be easily recognized in normal animals. This does not necessarily mean that these effects can be used in therapy. Observing the global effects of drugs during LD50 determinations, pharmacologists can detect psychotropic activity. Only if these effects occur also in doses considerably below the LD50 are further evaluations justified. This basic experience resulted in the development of a variety of observational tests and activity measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

Observational Assessment

  • Crawley JN (2000) Behavioral phenotyping of mutant mice. In: New technologies for life sciences: a trends guide, vol 1. pp 18–22

    Google Scholar 

  • Crawley JN, Paylor R (1997) A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31:197–211

    CAS  PubMed  Google Scholar 

  • Haggerty GC (1991) Strategy for and experience with neurotoxicity testing of new pharmaceuticals. J Am Coll Toxicol 10:677–687

    Google Scholar 

  • Irwin S (1964) Drug screening and evaluation of new compounds in animals. In: Nodin JH, Siegler PE (eds) Animal and clinical techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 36–54

    Google Scholar 

  • Irwin S (1968) Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioural and physiologic state of the mouse. Psychopharmacologia 13:222–257

    CAS  PubMed  Google Scholar 

  • Mattsson JL, Spencer PJ, Albee RR (1996) A performance standard for clinical and functional observation battery examination of rats. J Am Coll Toxicol 15:239–254

    Google Scholar 

  • Murray AM, Waddington JL (1990) The interaction of clozapine with dopamine D1 versus dopamine D2 receptor-mediated function: behavioural indices. Eur J Pharmacol 186:79–86

    CAS  PubMed  Google Scholar 

  • Porsolt RD (2006) General nervous system (CNS) safety pharmacological studies. In: Vogel HG (ed) Drug discovery and evaluation – safety and pharmacokinetic assays. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Rambert FA (2000) Pharmacologie de sécurité: système nerveux central. Therapie 55:55–61

    CAS  PubMed  Google Scholar 

  • Silverman P (1978) Drug screening and brain pharmacology. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 58–78

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (1991) Pesticide assessment guidelines. Subdivision F, hazard evaluation: human and domestic animals. Addendum 10, Neurotoxicity series 81, 82 and 83, PB 91–154617. United States Environmental Protection Agency, Washington, DC

    Google Scholar 

Safety Pharmacology Core Battery

  • ICH Harmonized Tripartite Guideline (M3) (1997) Timing of non-clinical safety studies for the conduct of human clinical trial for pharmaceuticals

    Google Scholar 

  • Rambert FA (2000) Pharmacologie de sécurité: système nerveux central. Therapie 55:55–61

    CAS  PubMed  Google Scholar 

  • The European Agency for the Evaluation of Medicinal Product, Human Medicines Evaluation Unit (2000) ICH Topic S7. Safety pharmacology studies for human pharmaceuticals. Note for guidance on safety pharmacology studies in human pharmaceuticals

    Google Scholar 

Effects on Motility (Sedative or Stimulatory Activity)

  • Barnett SH (1963) The rat: a study in behavior. Aldine Publishing, Chicago, pp 31–32

    Google Scholar 

  • Geyer MA (1990) Approaches to the characterization of drug effects on locomotor activity in rodents. In: Modern methods in pharmacology, vol. 6, testing and evaluation of drugs of abuse. Wiley-Liss, New York, pp 81–99

    Google Scholar 

  • Kinnard WJ, Watzman N (1966) Techniques utilized in the evaluation of psychotropic drugs on animal activity. J Pharm Sci 55:995–1012

    Google Scholar 

  • Silverman P (1978) Motor activity. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 79–92

    Google Scholar 

  • Turner RA (1965) Depressants of the central nervous system. In: Turner RA (ed) Screening methods in pharmacology, vol 1. Academic, New York/London, pp 69–86

    Google Scholar 

Method of Intermittent Observations

  • Hirabayashi M, Tadokoro S (1993) Effect of chlorpromazine on mouse ambulatory activity sensitization caused by (+)-amphetamine. J Pharm Pharmacol 45:481–483

    CAS  PubMed  Google Scholar 

  • Koek W, Woods JH, Ornstein P (1987) A simple and rapid method for assessing similarities among directly observable behavioural effects of drugs: PCP-like effects of 2-amino-5-phosphonovalerate in rats. Psychopharmacology (Berl) 91:297–304

    CAS  Google Scholar 

  • Meyer HJ (1962) Pharmakologie der wirksamen Prinzipien des Kawa-Rhizoms (Piper methysticum Frost). Arch Int Pharmacodyn 138:505–536

    CAS  PubMed  Google Scholar 

  • Namina M, Sugihara K, Watanabe Y, Sasa H, Umekage T, Okamoto K (1999) Quantitative analysis of the effect of lithium on the reverse tolerance and the c-Fos expression induced by methamphetamine in mice. Brain Res Brain Res Protoc 4:11–18

    Google Scholar 

  • Schaumann W, Stoepel K (1961) Zur quantitativen Beurteilung von zentraler Erregung und Dämpfung im Tierversuch. Naunyn Schmiedebergs Arch Exp Path Pharmakol 241:383–392

    CAS  Google Scholar 

  • Ther L (1953) Über eine einfache Methode zur Bestimmung von Weck- und Beruhigungsmitteln im Tierversuch. Dtsch Apoth Ztg 93:292–294

    Google Scholar 

  • Vogel G, Ther L (1963) Zur Wirkung der optischen Isomeren von Aethyltryptamin-acetat auf die Lagekatalepsie des Huhnes und auf die Motilität der Maus. Arzneim Forsch/Drug Res 13:779–783

    CAS  Google Scholar 

Open Field Test

  • Abo-Salem OM, Hayallah AM, Bilkei-Gorzo A, Filipek B, Zimmer A, Müller CA (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366

    CAS  PubMed  Google Scholar 

  • Barros HMT, Tannhauser MAL, Tannhauser SL, Tannhauser M (1991) Enhanced detection of hyperactivity after drug withdrawal with a simple modification of the open-field apparatus. J Pharmacol Methods 26:269–275

    CAS  PubMed  Google Scholar 

  • Becker H, Randall CL (1989) Effects of prenatal ethanol exposure in C57BL mice on locomotor activity and passive avoidance behavior. Psychopharmacology (Berl) 97:40–44

    CAS  Google Scholar 

  • Bilkei-Gorzo A, Racz I, Michel K, Zimmer A, Klingmüller D, Zimmer A (2004) Behavioral phenotype of preproenkephalin-deficient mice on diverse congenic backgrounds. Psychopharmacology (Berl) 176:343–352

    CAS  Google Scholar 

  • Carlezon WA, Cornfeldt ML, Szewczak MR, Fielding S, Dunn RW (1991) Reversal of both QNX-induced locomotion and habituation decrement is indicative of M1 agonist properties. Drug Dev Res 23:333–339

    CAS  Google Scholar 

  • Choi OH, Shamin MT, Padgett WL, Daly JW (1988) Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci 43:387–398

    CAS  PubMed  Google Scholar 

  • Crabbe JC, Young ER, Deutsch CM, Tam BR, Kosobud A (1987) Mice genetically selected for differences in openfield activity after ethanol. Pharmacol Biochem Behav 27:577–581

    CAS  PubMed  Google Scholar 

  • Crabbe JC, Deutsch CM, Tam BR, Young ER (1988) Environmental variables differentially affect ethanol-stimulated activity in selectively bred mouse lines. Psychopharmacology (Berl) 95:103–108

    CAS  Google Scholar 

  • Crunelli V, Bernasconi S (1979) A new device to measure different size movements: studies on d-amphetamine-induced locomotion and stereotypy. J Pharmacol Methods 2:43–50

    CAS  Google Scholar 

  • Dauge V, Corringer PJ, Roques BP (1995) CCKA, but not CCKB, antagonists suppress the hyperlocomotion induced by endogenous enkephalins, protected from enzymatic degradation by systemic RB 101. Pharmacol Biochem Behav 50:133–139

    CAS  PubMed  Google Scholar 

  • Dews PB (1953) The measurement of the influence of drugs on voluntary activity in mice. Br J Pharmacol 8:46–48

    CAS  Google Scholar 

  • Ericson E, Samuelsson J, Ahlenius S (1991) Photocell measurements of rat motor activity. J Pharmacol Methods 25:111–122

    CAS  PubMed  Google Scholar 

  • Fontenay M, Le Cornec J, Zaczinska M, Debarele M, Simon P, Boissier J (1970) De trois tests de comportement du rat pour l’etude des medicaments psychotropes. J Pharmacol 1:243–254

    Google Scholar 

  • Georgiev V, Getova D, Opitz M (1991) Mechanism of the angiotensin II effects on exploratory behavior of rats in open field. III. Modulatory role of GABA. Methods Find Exp Clin Pharmacol 13:5–9

    CAS  PubMed  Google Scholar 

  • Ghelardini C, Galeotti N, Gualtieri F, Marchese V, Bellucci C, Bartolini A (1998) Antinociceptive and antiamnesic properties of the presynaptic cholinergic amplifier PG-9. J Pharmacol Exp Ther 284:806–816

    CAS  PubMed  Google Scholar 

  • Gillies DM, Mylecharane EJ, Jackson DM (1996) Effects of 5-HT3 receptor-selective agents on locomotor activity in rats following injection into the nucleus accumbens and the ventral tegmental area. Eur J Pharmacol 303:1–12

    CAS  PubMed  Google Scholar 

  • Heijtz RD, Beraki S, Scott L, Aperia A, Forssberg H (2002) Sex differences in the motor inhibitory and stimulatory role of dopamine D1 receptors in rats. Eur J Pharmacol 445:97–104

    CAS  PubMed  Google Scholar 

  • Heijtz RD, Scott L, Forssberg H (2004) Alteration of dopamine D1 receptor-mediated motor inhibition and stimulation during development in rats is associated with distinct patterns of c-fos mRNA expression in the frontal-striatal circuitry. Eur J Neurosci 19:945–956

    Google Scholar 

  • Honma S, Honma KI, Hiroshige T (1991) Methamphetamine effects on rat circadian clock depend on actograph. Physiol Behav 49:787–795

    CAS  PubMed  Google Scholar 

  • Irifune M, Sato T, Nishikawa T, Masuyama T, Nomoto M, Fukada T, Kawahara M (1997) Hyperlocomotion during recovery from isoflurane anesthesia is associated with increased dopamine turnover in the nucleus accumbens and striatum in mice. Anesthesiology 86:464–475

    CAS  PubMed  Google Scholar 

  • Ivens I (1990) Neurotoxicity testing during long-term studies. Neurotoxicol Teratol 12:637–641

    CAS  PubMed  Google Scholar 

  • Kádár T, Telegdy G, Schally AV (1992) Behavioral effect of centrally administered LH-RH agonist in rats. Physiol Behav 51:601–605

    PubMed  Google Scholar 

  • Kauppila T, Tanila H, Carlson S, Taira T (1991) Effects of atipamezole, a novel α2-adrenoreceptor antagonist, in openfield, plus-maze, two compartment exploratory, and forced swimming tests in rats. Eur J Pharmacol 205:177–182

    CAS  PubMed  Google Scholar 

  • Kulig BM (1989) A neurofunctional test battery for evaluating the effects of long-term exposure to chemicals. J Am Coll Toxicol 8:71–83

    CAS  Google Scholar 

  • Kuzmin A, Sandin J, Terenius L, Ögren SO (2003) Acquisition, expression, and reinstatement of ethanol-induced place preference in mice: effects of opioid receptor-like 1 receptor agonists and naloxone. J Pharmacol Exp Ther 304:310–318

    CAS  PubMed  Google Scholar 

  • Laviola G, Alleva E (1990) Ontogeny of muscimol effects on locomotor activity, habituation, and pain reactivity in mice. Psychopharmacology (Berl) 102:41–48

    CAS  Google Scholar 

  • Liu HJ, Sato K, Shih HC, Shibuya T, Kawamoto H, Kitagawa H (1985) Pharmacological studies of the central action of zopiclone: effects on locomotor activity and brain monoamines in rats. Int J Clin Pharmacol Ther Toxicol 23:121–128

    CAS  PubMed  Google Scholar 

  • Magnus-Ellenbroek B, Havemann-Reinicke U (1993) Morphine-induced hyperactivity in rats – a rebound effect? Naunyn Schmiedebergs Arch Pharmacol 347:635–642

    CAS  PubMed  Google Scholar 

  • Masuo Y, Matsumoto Y, Morita S, Noguchi J (1997) A novel method for counting spontaneous motor activity in rats. Brain Res Brain Res Protoc 1:321–326

    CAS  PubMed  Google Scholar 

  • Nakatsu K, Owen JA (1980) A microprocessor-based animal monitoring system. J Pharmacol Methods 3:71–82

    CAS  PubMed  Google Scholar 

  • Nieminen SA, Lecklin A, Heikkinen O, Ylitalo P (1990) Acute behavioral effects of the organophosphates Sarin and Soman in rats. Pharmacol Toxicol 67:36–40

    CAS  PubMed  Google Scholar 

  • Nikodijevic O, Sarges R, Daly JW, Jacobson KA (1991) Behavioral effects of A1- and A2-selective adenosine agonists and antagonists: evidence for synergism and antagonism. J Pharmacol Exp Ther 259:286–294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Okada K, Oishi R, Saeki K (1990) Inhibition by antimanic drugs of hyperactivity induced by methamphetamine-chlordiazepoxide mixture in mice. Pharmacol Biochem Behav 35:897–901

    CAS  PubMed  Google Scholar 

  • Petkov VD, Belcheva S, Konstatinova E (1995) Anxiolytic effects of dotarizine, a possible antimigraine drug. Methods Find Exp Clin Pharmacol 17:659–668

    CAS  PubMed  Google Scholar 

  • Rex A, Stephens DN, Fink H (1996) ‘Anxiolytic’ action of diazepam and abecarnil in a modified open field test. Pharmacol Biochem Behav 53:1005–11011

    CAS  PubMed  Google Scholar 

  • Rex A, Voigt JP, Voits M, Fink H (1998) Pharmacological evaluation of a modified open-field test sensitive to anxiolytic drugs. Pharmacol Biochem Behav 59:677–683

    CAS  PubMed  Google Scholar 

  • Rosenthal MJ, Morley JE (1989) Corticotropin releasing factor (CRF) and age-related differences in behavior of mice. Neurobiol Aging 10:167–171

    CAS  PubMed  Google Scholar 

  • Saelens JK, Kovacsics GB, Allen MP (1986) The influence of the adrenergic system on the 24-hour locomotor activity pattern in mice. Arch Int Pharmacodyn 173:411–416

    Google Scholar 

  • Sienkiewicz-Jarosz H, Szyndler J, Czlonkowska AI, Siemiątkowski M, Maciejak P, Wisłowska A, Zeinowicz M, Lehner M, Turzyńska D, Bidziński A, Plaźnik A (2003) Rat behavior in two models of anxiety and brain [3H]muscimol binding: pharmacological, correlation, and multifactor analysis. Behav Brain Res 145:17–23

    CAS  PubMed  Google Scholar 

  • Sillaber I, Montkowski A, Landgraf R, Barden N, Holsboer F, Spanagel R (1998) Enhanced morphine-induced behavioural affects and dopamine release in the nucleus accumbens in a transgenic mouse model of impaired glucocorticoid (type II) receptor function: influence of longterm treatment with the antidepressant moclobemide. Neuroscience 85:415–425

    CAS  PubMed  Google Scholar 

  • Silverman P (1978) Exploration. In: Animal behaviour in the laboratory. Chapman and Hall, London, pp 230–253

    Google Scholar 

  • Spooren WPJM, Vassout A, Neijt HC, Kuhn R, Casparini F, Roux S, Porsolt RD, Gentsch C (2000) Anxiolytic-like effects of the prototypical metabotropic glutamate receptor 5 antagonist 2-methyl-6-(phenylethynyl)pyridine in rodents. J Pharmacol Exp Ther 295:1267–1275

    CAS  PubMed  Google Scholar 

  • Steiner H, Fuchs S, Accili D (1997) D3 dopamine receptor-deficient mouse: evidence of reduced anxiety. Physiol Behav 63:137–141

    CAS  PubMed  Google Scholar 

  • Stobrawa SM, Breiderhoff T, Takamori S, Engel D, Schweizer M, Zdebik AA, Bösl MR, Ruether K, Jahn H, Draguhn H, Jahn R, Jentsch TJ (2001) Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 28:185–196

    Google Scholar 

  • Strekalova T, Spanagel R, Dolgov O, Bartsch D (2005) Stressinduced hyperlocomotion as a confounding factor in anxiety and depression models in mice. Behav Pharmacol 16:171–180

    CAS  PubMed  Google Scholar 

  • Ströhle A, Jahn H, Montkowski A, Liebsch G, Boll E, Landgraf R, Holsboer F, Wiedemann K (1997) Central and peripheral administration of atriopeptin is anxiolytic in rats. Neuroendocrinology 65:210–215

    PubMed  Google Scholar 

  • Strömberg C (1988) Interactions of antidepressants and ethanol on spontaneous locomotor activity and rotarod performance in NMRI and C57BL/6 mice. J Psychopharmacol 2:61–66

    PubMed  Google Scholar 

  • Sugita R, Sawa Y, Nomura S, Zorn SH, Yamauchi T (1989) Effects of reserpine on dopamine metabolite in the nucleus accumbens and locomotor activity in freely moving rats. Neurochem Res 14:267–270

    CAS  PubMed  Google Scholar 

  • Surmann A, Havemann-Reinicke U (1995) Injection of apomorphine – a test to predict individual different dopaminergic sensitivity? J Neural Transm Suppl 45:143–155

    CAS  PubMed  Google Scholar 

  • Tanger HJ, Vanwersch RAP, Wolthuis OL (1978) Automated TV-based system for open field studies: effects of methamphetamine. Pharmacol Biochem Behav 9:555–557

    CAS  PubMed  Google Scholar 

  • VanHaaren F, Meyer ME (1991) Sex differences in locomotor activity after acute and chronic cocaine administration. Pharmacol Biochem Behav 39:923–927

    CAS  Google Scholar 

  • Vorhees CV, Acuff-Smith KD, Mink DR, Butcher RE (1992) A method of measuring locomotor behavior in rodents: contrast-sensitive computer-controlled video tracking activity assessment in rats. Neurotoxicol Teratol 14:43–49

    CAS  PubMed  Google Scholar 

  • Wellmer A, Noeske C, Gerber J, Munzel U, Nau R (2000) Spatial memory and learning deficits after experimental pneumococcal meningitis in mice. Neurosci Lett 296:137–140

    CAS  PubMed  Google Scholar 

  • Wolffgramm J, Lechner J, Coper H (1988) Interaction of two barbiturates and an antihistamine on body temperature and motor performance in mice. Arzneim Forsch/Drug Res 38:885–891

    CAS  Google Scholar 

Hole-Board Test

  • Boissier JR, Simon P (1964) Dissociation de deux composantes dans le comportement d’investigation de la souris. Arch Int Pharmacodyn 147:372–388

    CAS  Google Scholar 

  • Boissier JR, Simon P, Wolff J-ML (1964) L’utilisation d’une reaction particuliere de la souris (Methode de la planche atrous) pour l’etude des medicaments psychotropes. Therapie 19:571–586

    CAS  PubMed  Google Scholar 

  • Clark G, Koester AG, Pearson DW (1971) Exploratory behavior in chronic disulfoton poisoning in mice. Psychopharmacologia 20:169–171

    CAS  PubMed  Google Scholar 

Combined Open Field Test

  • Adams LM, Geyer MA (1982) LSD-induced alterations of locomotor patterns and exploration in rats. Psychopharmacology (Berl) 77:179–185

    CAS  Google Scholar 

  • Barbier P, Breteaudeau J, Autret E, Bertrand P, Foussard-Blampin O, Breteau M (1991) Effects of prenatal exposure to diazepam on exploration behavior and learning retention in mice. Dev Pharmacol Ther 17:35–43

    CAS  PubMed  Google Scholar 

  • Geyer MA (1982) Variational and probabilistic aspects of exploratory behavior in space: four stimulant styles. Psychopharmacol Bull 18:48–51

    CAS  Google Scholar 

  • Geyer MA, Rosso PV, Masten VL (1986) Multivariate assessment of locomotor behavior: pharmacological and behavioral analyses. Pharmacol Biochem Behav 25:277–288

    CAS  PubMed  Google Scholar 

  • Krsiak M, Steinberg H, Stoleman IP (1970) Uses and limitations of photocell activity cages for assessing effects of drugs. Psychopharmacologia 17:258–274

    CAS  PubMed  Google Scholar 

  • Ljungberg T, Ungerstedt U (1977) Different behavioural patters induced by apomorphine: evidence that the method of administration determines the behavioural response to the drug. Eur J Pharmacol 46:41–50

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Bing C, Sasaki K, Watanabe H (1990) Methylamphetamine- and apomorphine-induced changes in spontaneous motor activity using a new system to detect and analyze motor activity in mice. J Pharmacol Methods 24:111–119

    CAS  PubMed  Google Scholar 

  • Schwarting RKW, Goldenberg R, Steiner H, Fornaguera J, Huston HP (1993) A video image analyzing system for openfield behavior in the rat focusing on behavioral asymmetries. J Neurosci Methods 49:199–210

    CAS  PubMed  Google Scholar 

  • Weischer ML (1976) Eine einfache Versuchsanordnung zur quantitativen Beurteilung von Motilitaet und Neugierverhalten bei Maeusen. Psychopharmacology (Berl) 50:275–279

    CAS  Google Scholar 

  • Wolffgramm J, Lechner J, Coper H (1988) Interaction of two barbiturates and an antihistamine on body temperature and motor performance in mice. Arzneim Forsch/Drug Res 38:885–891

    CAS  Google Scholar 

EEG Analysis From Rat Brain by Telemetry

  • de Simoni MG, de Luigi A, Imeri L, Algerin S (1990) Miniaturized optoelectronic system for telemetry of in vivo voltammetric signals. J Neurosci Methods 33:233–240

    PubMed  Google Scholar 

  • Dimpfel W, Spüler M, Nickel B (1986) Radioelectroencephalography (Tele-Stereo-EEG) in the rat as a pharmacological model to differentiate the central action of flupirtine from that of opiates, diazepam and phenobarbital. Neuropsychobiology 16:163–168

    CAS  PubMed  Google Scholar 

  • Dimpfel W, Spüler M, Nichols DE (1989) Hallucinogenic and stimulatory amphetamine derivatives: fingerprinting DOM, DOI, DOB, MDMA, and MBDB by spectral analysis of brain field potentials in the freely moving rat (Tele-Stereo-EEG). Psychopharmacology (Berl) 98:297–303

    CAS  Google Scholar 

  • Dimpfel W, Spüler M, Bonke D (1990) Influence of repeated vitamin B administration on the frequency pattern analyzed from rat brain electrical activity (Tele-Stereo-EEG). Klin Wochenschr 68:136–141

    CAS  PubMed  Google Scholar 

  • Dimpfel W, Wedekind W, Spüler M (1992) Field potential analysis in the freely moving rat during the action of cyclandelate or flunarizine. Pharmacol Res 25:287–297

    CAS  PubMed  Google Scholar 

  • Justice JB Jr (1987) Introduction to in vivo voltammetry. In: Justice JB (ed) Voltammetry in the neurosciences: principles, methods and applications. Humana Press, Clifton, pp 3–102

    Google Scholar 

  • Kropf W, Kuschinsky K, Krieglstein J (1991) Conditioning of apomorphine effects: simultaneous analysis of the alterations in cortical electroencephalogram and behaviour. Naunyn Schmiedebergs Arch Pharmacol 343:559–567

    CAS  PubMed  Google Scholar 

  • Krügel U, Kittner H, Franke H, Illes P (2001) Accelerated functional recovery after neuronal injury by P2 receptor blockade. Eur J Pharmacol 420:R3–R4

    PubMed  Google Scholar 

Inclined Plane

  • Allmark MG, Bachinski WM (1949) A method of assay for curare using rats. J Am Pharm Assoc 38:43–45

    CAS  Google Scholar 

  • Randall LO, Heise GA, Schallek W, Bagdon RE, Banzinger R, Boris A, Moe RA, Abrams WB (1961) Pharmacological and clinical studies on ValiumTM. A new psychotherapeutic agent of the benzodiazepine class. Curr Ther Res 3:405–425

    CAS  PubMed  Google Scholar 

  • Rivlin A, Tator C (1977) Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg 47:577–581

    CAS  PubMed  Google Scholar 

  • Ther L, Vogel G, Werner P (1959) Zur pharmakologischen Differenzierung und Bewertung von Neuroleptica. Arzneim Forsch/Drug Res 9:351–354

    CAS  Google Scholar 

Chimney Test

  • Boissier JR, Tardy J, Diverres JC (1960) Une novelle méthode simple pour explorer l’action “tranquillisante”: le test de la cheminée. Med Exp 3:81–84

    CAS  Google Scholar 

  • Simiand J, Keane PE, Biziere K, Soubrie P (1989) Comparative study in mice of Tetrazepam and other centrally active skeletal muscle relaxants. Arch Int Pharmacodyn 297:272–285

    CAS  PubMed  Google Scholar 

  • Turner RA (1965) Ataractic (tranquillizing, neuroleptic) agents, Chapter 7. In: Screening methods in pharmacology. Academic, New York/London, pp 87–100

    Google Scholar 

Grip Strength

  • Anderson KD, Abdul M, Steward O (2004) Quantitative assessment of deficits and recovery of forelimb motor function after cervical spinal cord injury in mice. Exp Neurol 190:184–191

    PubMed  Google Scholar 

  • Baier PC, Schindehütte J, Thinynane K, Flügge G, Fuchs E, Mansouri A, Paulus W, Gruss P, Trenkwalder C (2004) Behavioral changes in unilaterally 6-hydroxydopamine lesioned rats after transplantation of differentiated mouse embryonic stem cells without morphologic integration. Stem Cells 22:396–404

    CAS  PubMed  Google Scholar 

  • Barclay LL, Gibson GE, Blass JP (1981) The string test: an early behavioral change in thiamine deficiency. Pharmacol Biochem Behav 14:153–157

    CAS  PubMed  Google Scholar 

  • Boissier JR, Simon P (1960) L’utilisation du test de la traction, (Test de JULOU-COURVOISIER) pour l’etude des psycholeptiques. Therapie 15:1170–1174

    Google Scholar 

  • Deacon RMJ, Gardner CR (1984) The pull-up test in rats: a simple method for testing muscle relaxation. J Pharmacol Methods 11:119–124

    CAS  PubMed  Google Scholar 

  • Fleury C (1957) Nouvelle technique pour mesurer l’effort musculaire de la souris, dite test de l’agrippement. Arch Sci 10:107–112

    Google Scholar 

  • Kondziella W (1964) Eine neue Methode zur Messung der muskulaeren Relaxation bei weissen Maeussen. Arch Int Pharmacodyn 152:277–284

    CAS  PubMed  Google Scholar 

  • Kulig BM (1989) A neurofunctional test battery for evaluating the effects of long-term exposure to chemicals. J Am Coll Toxicol 8:71–83

    CAS  Google Scholar 

  • Meyer OA, Tilson HA, Bird WC, Riley MT (1979) A method for the routine assessment of fore- and hind limb grip strength of rats and mice. Neurobehav Toxicol 1:233–236

    CAS  PubMed  Google Scholar 

  • Miquel J, Blasco M (1978) A simple technique for evaluation of vitality loss in aging mice, by testing their muscular coordination and vigor. Exp Gerontol 13:389–396

    CAS  PubMed  Google Scholar 

  • Montag-Sallaz M, Montag D (2003) Severe cognitive and motor coordination deficits in Tenascin-R-deficient mice. Genes Brain Behav 2:20–31

    CAS  PubMed  Google Scholar 

  • Novack GD, Zwolshen JM (1983) Predictive value of muscle relaxant models in rats and cats. J Pharmacol Methods 10:175–183

    CAS  PubMed  Google Scholar 

  • Simiand J, Keane PE, Biziere K, Soubrie P (1989) Comparative study in mice of Tetrazepam and other centrally active skeletal muscle relaxants. Arch Int Pharmacodyn 297:272–285

    CAS  PubMed  Google Scholar 

  • Tilson HA (1990) Behavioral indices of neurotoxicity. Toxicol Pathol 18:96–104

    CAS  PubMed  Google Scholar 

Rotarod Method

  • Augustin I, Korte S, Rickmann M, Kretschmar HA, Südhof TC, Herms JW, Brose N (2001) The cerebellum-specific Munc13 isoform Munc13–3 regulates synaptic transmission and motor learning in mice. J Neurosci 21:10–17

    CAS  PubMed  Google Scholar 

  • Capacio BR, Harris LW, Anderson DR, Lennox WJ, Gales V, Dawson JS (1992) Use of the accelerating rotarod for assessment of motor performance decrement induced by potential anticonvulsant compounds in nerve agent poisoning. Drug Chem Toxicol 15:177–201

    CAS  PubMed  Google Scholar 

  • Cartmell SM, Gelgor L, Mitchell D (1991) A revised rotarod procedure for measuring the effect of antinociceptive drugs on motor function in the rat. J Pharmacol Methods 26:149–159

    CAS  PubMed  Google Scholar 

  • Dere E, De Souza-Silva MA, Teubner B, Söhl G, Willecke K, Huston JR (2003) Connexin30-deficient mice show increased emotionality and decreased rearing activity in the open-field along with neurochemical changes. Eur J Neurosci 18:629–638

    CAS  PubMed  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc 46:208–210

    CAS  Google Scholar 

  • Hosseinzadeh H, Asl MN (2003) Anticonvulsant, sedative and muscle relaxant effects of carbenoxolone in mice. BMC Pharmacol 23:1–6

    Google Scholar 

  • Novack GD, Zwolshen JM (1983) Predictive value of muscle relaxant models in rats and cats. J Pharmacol Methods 10:175–183

    CAS  PubMed  Google Scholar 

  • Rozas G, Labandeira-Garcia JL (1997) Drug-free evaluation of rat models of Parkinsonism and nigral grafts using a new automated rotarod test. Brain Res 749:188–199

    CAS  PubMed  Google Scholar 

  • Saeed Dar M, Wooles WR (1986) Effect of chronically administered methylxanthines on ethanol-induced motor incoordination in mice. Life Sci 39:1429–1437

    Google Scholar 

  • Vitali R, Clarke S (2004) Improved rotarod performance and hyperactivity in mice deficient in a protein repair methyltransferase. Behav Brain Res 153:129–141

    CAS  PubMed  Google Scholar 

Treadmill Performance

  • Ahlenius S, Kaur P, Salmi P (1997a) Biphasic effects of 8-OHDPAT on endurance of treadmill performance in the male rat. Eur Neuropsychopharmacol 7:89–94

    CAS  PubMed  Google Scholar 

  • Ahlenius S, Ericson E, Hillegaart V, Nilsson LB, Salmi P, Wijkström A (1997b) In vivo effects of Remoxipride and aromatic ring metabolites in the rat. J Pharmacol Exp Ther 283:1356–1366

    CAS  PubMed  Google Scholar 

  • Antri M, Barthe JY, Mouffle C, Orsal D (2005) Long lasting recovery of locomotor function in chronic spinal rats following combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine. Neurosci Lett 384:162–167

    CAS  PubMed  Google Scholar 

  • Balon TW, Nadler JL (1997) Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82:359–363

    CAS  PubMed  Google Scholar 

  • Douglas JR, Noga BR, Dai X, Jordan LM (1993) The effect of intrathecal administration of excitatory amino acid agonists and antagonists on the initiation of locomotion in the adult cat. J Neurosci 13:990–1000

    CAS  PubMed  Google Scholar 

  • Foianini KR, Steen MS, Kinnik TR, Schmit MB, Youngblood EB, Henriksen EJ (2000) Effects of exercise training and ACE inhibition on insulin action in rat skeletal muscle. J Appl Physiol 89:687–694

    CAS  PubMed  Google Scholar 

  • Gosmanov AR, Nordtvedt NC, Brown R, Thomason DB (2002) Exercise effects on muscle β-adrenergic signaling for MAPK-dependent NKCC activity are rapid and persistent. J Appl Physiol 93:1457–1465

    CAS  PubMed  Google Scholar 

  • Juel C (1998) Skeletal muscle Na+/H+ exchange in rats: pH dependency and the effect of training. Acta Physiol Scand 164:135–143

    CAS  PubMed  Google Scholar 

  • Koller A, Huang A, Sun D, Kaley G (1995) Exercise training augments flow-dependent dilation in rat skeletal muscle arterioles. Circ Res 76:544–550

    CAS  PubMed  Google Scholar 

  • Liu Y, Obata K, Yamanaka H, Dai Y, Fukuoka T, Tokunaga A, Noguchi K (2004) Activation of extracellular signal-related protein kinase in dorsal horn neurons in the rat neuropathic intermittent claudication model. Pain 100:64–72

    Google Scholar 

  • Marchant EG, Mistlberger RE (1996) Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running. Physiol Behav 60:657–663

    CAS  PubMed  Google Scholar 

  • Matthew CB, Hubbard RW, Francesconi RP, Thomas GJ (1988) Carbamates, atropine, and diazbepam: effects on performance in the running rat. Life Sci 42:1925–1931

    CAS  PubMed  Google Scholar 

  • Minami N, Mori N, Nagasaka M, Harada T, Kurossawa H, Kanazawa M, Kohzuki M (2004) Effect of high-salt diet or chronic captopril treatment on exercise capacity in normotensive rats. Clin Exp Pharmacol Physiol 31:197–201

    CAS  PubMed  Google Scholar 

  • Nakai K, Takenobu Y, Takimizu H, Akimaru S, Maegawa H, Ito H, Marsala M, Katsube N (2003) Effects of OP-1206 α-CD on walking dysfunction in the rat neuropathic intermittent claudication model: comparison with nifedipine, ticlopidine and cilostazol. Prostaglandins Other Lipid Mediat 71:253–263

    CAS  PubMed  Google Scholar 

  • Oudot F, Larue-Achagiotis C, Anton G, Verger P (1996) Modifications in dietary self-selection specifically attributable to voluntary wheel running and exercise training in the rat. Physiol Behav 59:1123–1128

    CAS  PubMed  Google Scholar 

  • Roth DA, White CD, Podolin DA, Mazzeo RS (1998) Alterations in myocardial signal transduction due to aging and chronic dynamic exercise. J Appl Physiol 84:177–184

    CAS  PubMed  Google Scholar 

  • Saengsirisuwan V, Perez FR, Kinnik TR, Henriksen EJ (2002) Effects of exercise training and antioxidant R-ALA on glucose transport in insulin-sensitive rat skeletal muscle. J Appl Physiol 92:50–58

    CAS  PubMed  Google Scholar 

  • Snider RM, Ordway GA, Gerald MC (1983) Effects of methylphenidate on rat endurance performance and neuromuscular transmission in vitro. Neuropharmacology 22:83–88

    CAS  PubMed  Google Scholar 

  • Soares DD, Lima NRV, Coimbra CC, Marubayashi U (2003) Evidence that tryptophan reduces mechanical efficiency and running performance in rats. Pharmacol Biochem Behav 74:357–362

    CAS  PubMed  Google Scholar 

  • Spier SA, Laughlin MH, Delp MD (1999) Effect of acute and chronic exercise on vasoconstrictor responsiveness of rat abdominal aorta. J Appl Physiol 87:1752–1757

    CAS  PubMed  Google Scholar 

  • Steinberg GR, Smith AC, Wormald S, Malenfant P, Collier C, Dyck DJ (2004) Endurance training partially reverses dietary-induced leptin resistance in rodent skeletal muscle. Am J Physiol 286:E57–E63

    CAS  Google Scholar 

  • Sun D, Huang A, Koller A, Kaley G (1994) Short-term daily exercise activity enhances endothelial NO synthesis in skeletal muscle arterioles of rats. J Appl Physiol 76:2241–2247

    CAS  PubMed  Google Scholar 

  • Sun D, Huang A, Koller A, Kaley G (2002) Enhanced NOmediated dilations in skeletal muscle arterioles of chronically exercised rats. Microvasc Res 64:491–496

    CAS  PubMed  Google Scholar 

  • Villanueva DS, Poirier P, Standley PR, Broderick TL (2003) Prevention of ischemic heart failure by exercise in spontaneously diabetic BB Wor rats subjected to insulin withdrawal. Metabolism 52:791–797

    CAS  PubMed  Google Scholar 

  • Zhou Q, Dohm GL (1997) Treadmill running increases phosphatidylinositol 3-kinase activity in rat skeletal muscle. Biochem Biophys Res Commun 236:647–650

    CAS  PubMed  Google Scholar 

Influence on Polysynaptic Reflexes

  • Block F, Schwarz M (1994) The depressant effect of GYKI 52466 on spinal reflex transmission is mediated via non-NMDA and benzodiazepine receptors. Eur J Pharmacol 256:149–153

    CAS  PubMed  Google Scholar 

  • Farkas S, Ono H (1995) Participation of NMDA and non-NMDA excitatory amino acid receptors in the mediation of spinal reflex potentials: an in vivo study. Br J Pharmacol 114:1193–1205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Farkas S, Tarnawa I, Berzsenyi P (1989) Effects of some centrally acting muscle relaxants on spinal root potentials: a comparative study. Neuropharmacology 21:161–170

    Google Scholar 

  • Hasegawa Y, Ono H (1996) Effect of (±)-8-hydroxy-2-(di-npro-pylamino)tetralin hydrobromide on spinal motor systems in anesthetized intact and spinalized rats. Eur J Pharmacol 295:211–213

    CAS  PubMed  Google Scholar 

  • Klockgether T, Pardowitz I, Schwarz M (1985) Evaluation of the muscle relaxant properties of a novel β-carboline, ZK 93423 in rats and cats. Br J Pharmacol 86:357–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ono H, Saito KI, Kondo M, Morishita SI, Kato K, Hasebe Y, Nakayama M, Kato F, Nakamura T, Satoh M, Oka JI, Goto M, Fukuda H (1990) Effects of the new centrally acting muscle relaxant 7-chloro-N, N,3-trimethylbenzo[b]furan-2-carboxamide on motor and central nervous systems in rats. Arzneim Forsch/Drug Res 40:730–735

    CAS  Google Scholar 

  • Otsu T, Nagao T, Ono H (1998) Muscle relaxant action of MS-322, a new centrally acting muscle relaxant in rats. Gen Pharmacol 30:393–398

    CAS  PubMed  Google Scholar 

  • Pittermann W, Sontag KH, Wand P, Rapp K, Deerberg F (1976) Spontaneous occurrence of spastic paresis in Han-Wistar rats. Neurosci Lett 2:45–49

    CAS  PubMed  Google Scholar 

  • Sakitama K, Ozawa Y, Aoto N, Tomita H, Ishikawa M (1997) Effects of a new centrally acting muscle relaxant, NK433 (lamperisone hydrochloride) on spinal reflexes. Eur J Pharmacol 337:175–187

    CAS  PubMed  Google Scholar 

  • Schwarz M, Block F, Pergande G (1994) N-Methyl-d-aspartate (NMDA)-mediated muscle relaxant action of flupirtine in rats. Neuroreport 5:1981–1984

    CAS  PubMed  Google Scholar 

  • Schwarz M, Schmitt T, Pergande G, Block F (1995) N-Methyl-d-aspartate and α 2-adrenergic mechanisms are involved in the depressant action of flupirtine on spinal reflexes in rats. Eur J Pharmacol 276:247–255

    CAS  PubMed  Google Scholar 

  • Suzuki T, Sekikawa T, Nemoto T, Moriya H, Nakaya H (1995) Effects of nicorandil on the recovery of reflex potentials after spinal cord ischemia in cats. Br J Pharmacol 116:1815–1820

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tarnawa I, Farkas S, Berzsenyi P, Pataki A, Andrási F (1989) Electrophysiological studies with a 2,3-benzodiazepine muscle relaxant: GYKI 52466. Eur J Pharmacol 167:193–199

    CAS  PubMed  Google Scholar 

  • Turski L, Stephens DN (1993) Effect of the b-carboline Abecarnil on spinal reflexes in mice and on muscle tone in genetically spastic rats: a comparison with diazepam. J Pharmacol Exp Ther 267:1215–1220

    CAS  PubMed  Google Scholar 

  • Turski L, Klockgether T, Schwarz M, Turski WA, Sontag KH (1990) Substantia nigra: a site of action of muscle relaxant drugs. Ann Neurol 28:341–348

    CAS  PubMed  Google Scholar 

Masticatory Muscle Reflexes

  • Alia S, Azerad J, Pollin B (1998) Effects of RPR 100893, a potent NK1 antagonist, on the jaw-opening reflex in the guinea pig. Brain Res 787:99–106

    CAS  PubMed  Google Scholar 

  • Bakke M, Hu JW, Sessle BJ (1998) Involvement of NK1 and NK2 tachykinin receptor mechanisms in jaw muscle activity reflexly evoked by inflammatory irritant application to the rat temporomandibular joint. Pain 75:219–227

    CAS  PubMed  Google Scholar 

  • Boucher Y, Pollin B, Azerad J (1993) Microinfusions of excitatory amino acid antagonists into the trigeminal sensory complex antagonize the jaw opening reflex in freely moving rats. Brain Res 614:155–163

    CAS  PubMed  Google Scholar 

  • Funakoshi M, Amano N (1974) Periodontal jaw muscle reflexes in the albino rat. J Dent Res 53:598–603

    Google Scholar 

  • Huopaniemi T, Pertovaara A, Jyvasjavi E, Carlson C (1988) Effect of naloxone on tooth pulp-evoked jaw-opening reflex in the barbiturate-anaesthetized cat. Acta Physiol Scand 134:327–331

    CAS  PubMed  Google Scholar 

  • Laskin DM, Block S (1986) Diagnosis and treatment of myofascial pain-dysfunction (MPD) syndrome. J Prosthet Dent 56:75–83

    CAS  PubMed  Google Scholar 

  • Ozawa Y, Komai C, Sakitama K, Ishikawa M (1996) Effects of NK433, a new centrally acting muscle relaxant, on masticatory muscle reflexes in rats. Eur J Pharmacol 298:57–62

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Jeanne Kallman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Kallman, M.J. (2016). Effects on Behavior and Muscle Coordination. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_26

Download citation

Publish with us

Policies and ethics