Skip to main content

Binding Tests in Respiratory System

  • Reference work entry
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

Histamine receptors have been classified on the basis of pharmacological analysis (Hill et al. 1997). Histamine exerts its action via at least four receptor subtypes. The H1 receptor couples mainly to Gq/11, thereby stimulating phospholipase C, whereas the H2 receptor interacts with Gs to activate adenylyl cyclase. The histamine H3 and H4 receptors couple to Gi proteins to inhibit adenylyl cyclase and to stimulate MAPK (Hough 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

Histamine (H1) Receptor Binding

  • Bryce PJ, Mathias CB, Harrison KL, Watanabe T, Geha RS, Oettgen HC (2006) The H1 histaminic receptor regulates allergic lung responses. J Clin Invest 116(6):1624–1632

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Carswell H, Nahorski SR (1982) Distribution and characteristics of histamine H1-receptors in guinea-pig airways identified by [3H]mepyramine. Eur J Pharmacol 81:301–307

    Article  CAS  PubMed  Google Scholar 

  • Chang RSL, Tran VT, Snyder SH (1979) Heterogeneity of histamine H1-receptors: species variations in [3H]mepyramine binding of brain membranes. J Neurochem 32:1653–1663

    Article  CAS  PubMed  Google Scholar 

  • De Backer MD, Gommeren W, Moereels H, Nobels G, Van Gompel P, Leysen JE, Luyten WH (1993) Genomic cloning, heterologous expression and pharmacological characterization of a human H1-receptor. Biochem Biophys Res Commun 197:1601–1608

    Article  PubMed  Google Scholar 

  • Hill SJ, Emson PC, Young JM (1978) The binding of [3H]mepyramine to histamine H1 receptors in guinea-pig brain. J Neurochem 31:997–1004

    Article  CAS  PubMed  Google Scholar 

  • Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL (1997) International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49:253–278

    CAS  PubMed  Google Scholar 

  • Hough LB (2001) Genomics meets histamine receptors: new subtype, new receptor. Mol Pharmacol 59:415–419

    CAS  PubMed  Google Scholar 

  • Ruat M, Schwartz JC (1989) Photoaffinity labeling and electrophoretic identification of the H1-receptor: comparison of several brain regions and animal species. J Neurochem 53:335–339

    Article  CAS  PubMed  Google Scholar 

Muscarinic Receptor Binding

  • Alabaster VA (1997) Discovery and development of selective M3 antagonists for clinical use. Life Sci 60:1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (1993) Muscarinic receptor subtypes: implications for therapy. Agents Actions Suppl 43:243–252

    CAS  PubMed  Google Scholar 

  • Barnes PJ (2001) Tiotropium bromide. Expert Opin Investig Drugs 10:733–740

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ (2004) Distribution of receptor targets in the lung. Proc Am Thorac Soc 1:345–351

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Belvisi MG, Mak JCW, Haddad EB, O’Connor B (1995) Tiotropium bromide (Ba 679 BR), a novel long-acting muscarinic antagonist for the treatment of obstructive airway disease. Life Sci 56:853–859

    Article  CAS  PubMed  Google Scholar 

  • Barnes PJ, Haddad EB, Rousell J (1997) Regulation of muscarinic M2 receptors. Life Sci 60:1015–1021

    Article  CAS  PubMed  Google Scholar 

  • Chelala JL, Kilani A, Miller JM, Martin RJ, Ernsberger P (1998) Muscarinic receptor binding sites of the M4 subtype in porcine lung parenchyma. Pharmacol Toxicol 83:200–207

    Article  CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 percent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Article  CAS  PubMed  Google Scholar 

  • Costello RW, Jacoby DB, Fryer AD (2006) Pulmonary neuronal M2 muscarinic receptor function in asthma and animal models of hyperreactivity. Thorax 53:613–618

    Article  Google Scholar 

  • Disse B (2001) Antimuscarinic treatment for lung diseases. From research to clinical practice. Life Sci 68:2557–2564

    Article  CAS  PubMed  Google Scholar 

  • Disse B, Reichl R, Speck G, Traunecker W, Ludwig-Romminger KL, Hammer R (1993) Ba 679 BR, a novel long-acting anticholinergic bronchodilator. Life Sci 52:537–544

    Article  CAS  PubMed  Google Scholar 

  • Disse B, Speck GA, Rominger KL, Witek TJ Jr, Hammer R (1999) Tiotropium (Spirivaâ„¢): mechanistical considerations and clinical profile in obstructive lung disease. Life Sci 64:457–464

    Article  CAS  PubMed  Google Scholar 

  • Haddad EB, Mak JC, Barnes PJ (1994) Characterization of [3H]Ba 679 BR, a slowly dissociating muscarinic antagonist, in human lung: radioligand and autoradiographic mapping. Mol Pharmacol 45:899–907

    CAS  PubMed  Google Scholar 

  • Hirose H, Aoki I, Kimura T, Fujikawa T, Numazawa T, Sasaki K, Sato A, Hasegawa T, Nishikibe M, Mitsuya M, Ohtake N, Mase T, Noguchi K (2001) Pharmacological properties of (2R)-N-[1-(6-aminopyridin-2-ylmethyl)piperidin-4-yl]-2-[(1R)-3,3-difluorocyclopentyl]-2-hydroxy-2-phenylacetamide: a novel muscarinic antagonist with M2-sparing antagonistic activity. J Pharmacol Exp Ther 297:790–797

    CAS  PubMed  Google Scholar 

  • Hislop AA, Mak JCW, Reader JA, Barnes PJ, Haworth SG (1998) Muscarinic receptor subtypes in the porcine lung during postnatal development. Eur J Pharmacol 359:211–221

    Article  CAS  PubMed  Google Scholar 

  • Mak JC, Barnes PJ (1990) Autoradiographic visualization of muscarinic receptor subtypes in human and guinea pig lung. Am Rev Respir Dis 141:1559–1568

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto S (1997) Functional evidence of excitatory M1 receptors in the rabbit airway. J Pharmacol Exp Ther 281:531–539

    CAS  PubMed  Google Scholar 

  • Nathanson NM (2000) A multiplicity of muscarinic mechanisms: enough signaling pathways to take your breath away. Proc Natl Acad Sci U S A 97:6245–6247

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nishikibe M, Ohta H, Ishikawa K, Hayama T, Fukuroda T, Noguchi K, Saito M, Kanoh T, Ozaki S, Kamei T, Hara K, William D, Kivlighn S, Krause S, Gabel R, Zingaro G, Nolan N, O’Brien J, Clayton F, Lynch J, Pettibone D, Siegl P (1999) Pharmacological properties of J-104132 (L-753,037), a potent orally active, mixed ETA/ETB endothelin receptor antagonist. J Pharmacol Exp Ther 289:1262–1270

    CAS  PubMed  Google Scholar 

  • Okazawa A, Cui ZH, Lötvall J, Yoshihara S, Skoogh BE, Kashimoto K, Lindén A (1998) Effect of a novel PACAP-27 analogue on muscarinic airway responsiveness in guinea-pigs in vivo. Eur Respir J 12:1062–1066

    Article  CAS  PubMed  Google Scholar 

  • Patel HJ, Barnes PJ, Takahashi T, Tadjikarimi S, Yacoub MH, Belvisi MG (1995) Evidence for prejunctional muscarinic autoreceptors in human and guinea pig trachea. Am J Respir Crit Care Med 152:872–878

    Article  CAS  PubMed  Google Scholar 

  • Peták F, Hantos Z, Adamicza A, Asztalos T, Sly PD (1996) Metacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J Appl Physiol 80:1841–1849

    PubMed  Google Scholar 

  • Rees PJ (2002) Tiotropium in the management of chronic obstructive pulmonary disease. Eur Respir J 19:205–206

    Article  CAS  PubMed  Google Scholar 

  • Sarria B, Naline E, Zhang Y, Cortijo J, Molimard M, Moreau J, Therond P, Avenier C, Morcillo EJ (2002) Muscarinic M2 receptors in acetylcholine-isoproterenol functional antagonism in human isolated bronchus. Am J Physiol 283:L1125–L1132

    CAS  Google Scholar 

  • Struckmann N, Schwering S, Wiegand S, Gschnell A, Yamada M, Kummer W, Wess J, Haberberger RV (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways: studies on receptor deficient mice. Mol Pharmacol 64:1444–1451

    Article  CAS  PubMed  Google Scholar 

  • Tohda Y, Haraguchi R, Itoh M, Ohkawa K, Kubo H, Fukuoka M, Nakajima S (2002) Role of muscarinic receptors in a guinea pig model of asthma. Int Immunopharmacol 2:1521–1527

    Article  CAS  PubMed  Google Scholar 

  • Wale JL, Peták F, Sly PD (1999) Muscarinic blockade of methacholine induced airway and parenchymal lung responses in anaesthetized rats. Thorax 54:531–537

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristy D. Bruse .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Bruse, K.D. (2016). Binding Tests in Respiratory System. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_22

Download citation

Publish with us

Policies and ethics