Skip to main content

NO Activity and Rho Kinase Activity

  • Reference work entry
Drug Discovery and Evaluation: Pharmacological Assays

Abstract

The endothelium releases a labile, diffusible, vasorelaxing substance that has been termed endothelium-derived relaxing factor (EDRF) (Furchgott and Zawadzki 1980). Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor (Palmer et al. 1987; Vanhoutte 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

General Considerations on Nitric Oxide

  • Andreadis AA, Hazen SL, Comhair SAA, Erzurum SC (2003) Oxidative and nitrosative events in asthma. Free Radical Biol Med 15:213–225

    Google Scholar 

  • Davis KL, Martin E, Turko IV, Murad F (2001) Novel effects of nitric oxide. Annu Rev Pharmacol Toxicol 41:203–236

    CAS  PubMed  Google Scholar 

  • Feihl F, Waeber B, Liaudet L (2001) Is nitric overproduction the target of choice for management of septic shock? Pharmacol Ther 91:179–213

    CAS  PubMed  Google Scholar 

  • Fiorucci S, Antonelli E, Burgaud JL, Morelli A (2002) Nitric oxide-releasing NSAIDs. Drug Saf 24:801–811

    Google Scholar 

  • Förstermann U, Kleinert H (1995) Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg’s Arch Pharmacol 352:351–364

    Google Scholar 

  • Förstermann U, Schmidt HHHW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Murad F (1992) Characterization and classification of constitutive and inducible isoforms of nitric oxide synthase in various cell types. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 21–23

    Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Google Scholar 

  • Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, Ma XL (2002) Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion. The roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 105:1497–1502

    CAS  PubMed  Google Scholar 

  • Halliwell B (1997) What nitrates tyrosine? Is nitrotyrosine specific as biomarker of peroxynitrite? FEBS Lett 411:157–160

    CAS  PubMed  Google Scholar 

  • Hickey MJ (2001) Role of inducible nitric oxide synthase in the regulation of leucocyte recruitment. Clin Sci 100:1–11

    CAS  PubMed  Google Scholar 

  • Hropot M, Langer KH, Wiemer G, Grötsch H, Linz W (2003) Angiotensin II subtype AT1 receptor blockade prevents hypertension and renal insufficiency induced by chronic NO-synthase inhibition in rats. Naunyn-Schmiedebergs Arch Pharmacol 367:312–317

    CAS  PubMed  Google Scholar 

  • Huraux C, Makita T, Kurz S, Yamaguchi K, Szlam F, Tarpey MM, Wilcox JN, Harrison DG, Levy JH (1999) Superoxide production, risk factors, and endothelium-dependent relaxations in human internal mammary arteries. Circulation 99:53–59

    CAS  PubMed  Google Scholar 

  • Kajekar R, Moore PK, Brain SD (1995) Essential role for nitric oxide in neurogenic inflammation in rats cutaneous microcirculation. Evidence for endothelium-independent mechanism. Circ Res 76:441–447

    CAS  PubMed  Google Scholar 

  • Lamontagne D, Pohl U, Busse R (1991) N G-Nitro-l-arginine antagonizes endothelium-dependent dilator responses by inhibiting endothelium-derived relaxing factor release in the isolated rabbit heart. Pflüger’s Arch 418:266–270

    CAS  Google Scholar 

  • McIntyre M, Bohr DF, Dominiczak AF (1999) Endothelial function in hypertension. The role of superoxide anion. Hypertension 34:539–545

    CAS  PubMed  Google Scholar 

  • Megson IL (2000) Nitric oxide donor drugs. Drugs Future 25:701–715

    CAS  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    Google Scholar 

  • Moore PK, al-Swayeh OA, Chong NWS, Evans RA, Gibson A (1990) L-NG-nitro arginine (L-NOARG), a novel, l-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol 99:408–412

    PubMed Central  CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    CAS  PubMed  Google Scholar 

  • Pieper AA, Verma A, Zhang J, Snyder SH (1999) Poly(ADPribose) polymerase, nitric oxide and cell death. Trends Pharmacol Sci 20:171–181

    CAS  PubMed  Google Scholar 

  • Rand MJ, Li CG (1995) Nitric oxide as a neurotransmitter in peripheral nerves: nature of transmitter and mechanism of transmission. Ann Rev Phys 57:659–682

    CAS  Google Scholar 

  • Rees DD, Palmer RMJ, Moncada S (1989) Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A 86:3375–3378

    PubMed Central  CAS  PubMed  Google Scholar 

  • RiberoMO AE, de Nucci G, Lovisolo SM, Zatz R (1992) Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension 20:298–303

    Google Scholar 

  • Schrör K, Förster S, Woditsch I, Schröder H (1989) Generation of NO from molsidomine (SIN-1) in vitro and its relationship to changes in coronary vessel tissue. J Cardiovasc Pharmacol 14(Suppl 11):S29–S34

    PubMed  Google Scholar 

  • Schulz R, Kelm M, Heusch G (2004) Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 61:L402–L413

    Google Scholar 

  • Southam E, Garthwaite J (1993) The nitric oxide-cyclic GMP signalling pathway in the rat brain. Neuropharmacology 32:1267–1277

    CAS  PubMed  Google Scholar 

  • Susswein AJ, Katzoff A, Miller N, Hurwitz I (2004) Nitric oxide and memory. Neuroscientist 10:153–162

    CAS  PubMed  Google Scholar 

  • Szabó C (1996) DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med 21:855–869

    PubMed  Google Scholar 

  • Szabó C, Cuzzocrea S, Zingarelli B, O’Connor M, Salzman AL (1997) Endothelial dysfunction in a rat model of endotoxic shock. Importance of the activation of poly(ADP-ribose) synthetase by peroxynitrite. J Clin Invest 100:723–735

    PubMed Central  PubMed  Google Scholar 

  • Umans JG, Levi R (1995) Nitric oxide in the regulation of blood flow and arterial pressure. Ann Rev Phys 57:771–790

    CAS  Google Scholar 

  • Vanhoutte PM (1999) How to assess endothelial function in human blood vessels. J Hypertens 17:1047–1058

    CAS  PubMed  Google Scholar 

  • Willmot M, Gray L, Gibson C, Murphy S, Bath PMW (2005) A systematic review of nitric oxide donors and l-arginine in experimental stroke; effects on infarct size and cerebral blood flow. Nitric Oxide 12:141–149

    CAS  PubMed  Google Scholar 

  • Zanzinger J (1999) Role of nitric oxide in the neural control of cardiovascular function. Cardiovasc Res 43:639–649

    CAS  PubMed  Google Scholar 

Bioassay of EDRF Release

  • Riezebos J, Beems RB, Vleeming W, van Amsterdam JGC, Meijer GW, de Wildt DJ, Porsius AJ, Wemer J (1994) Comparison of Israpidine and Ramipril in cholesterol-fed rabbits: effect on progression of atherosclerosis and endothelial dysfunction. J Cardiovasc Pharmacol 23:415–423

    CAS  PubMed  Google Scholar 

  • Winn MJ, Panus PC, Norton P, Dai J (1992) Computer system for the acquisition and analysis of vascular contractility. Application to a bioassay of endothelial cell function. J Pharmacol Toxicol Methods 28:49–55

    CAS  PubMed  Google Scholar 

Isolated Arteries with and Without Endothelium

  • Bohn H, Schönafinger K (1989) Oxygen and oxidation promote the release of nitric oxide from sydnonimines. J Cardiovasc Pharmacol 14(Suppl 11):S6–S12

    CAS  PubMed  Google Scholar 

  • Chu A, Cobb FR (1987) Vasoactive effects of serotonin on proximal coronary arteries in awake dogs. Circ Res 61(Suppl II):II81–II87

    CAS  PubMed  Google Scholar 

  • Desta B, Nakashima M, Kirchengast M, Vanhoutte PM, Boulanger CM (1995) Previous exposure to bradykinin unmasks an endothelium-dependent relaxation to the converting enzyme inhibitor Trandolaprilat in isolated canine coronary arteries. J Pharmacol Exp Ther 272:885–891

    CAS  PubMed  Google Scholar 

  • Fujimoto M, Mihara S, Nakajima S, Ueda M, Nakamura M, Sakurai K (1992) A novel, non-peptide endothelin antagonist, isolated from bayberry, Myrica cerifera. FEBS Lett 305:41–44

    CAS  PubMed  Google Scholar 

  • Fukuroda T, Nishikibe M, Ohta Y, Ihara M, Yano M, Ishikawa K, Fukami T, Ikemoto F (1992) Analysis of responses to endothelins in isolated porcine blood vessels by using a novel endothelin antagonist, BQ-153. Life Sci 50:PL-107–PL-112

    CAS  Google Scholar 

  • Furchgott RF (1993) The discovery of endothelium-dependent relaxation. Circulation 87(Suppl V):V3–V8

    CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Google Scholar 

  • Hayashi Y, Tomoike H, Nagasawa K, Yamada A, Nishijima H, Adachi H, Nakamura M (1988) Functional and anatomical recovery of endothelium after denudation of coronary artery. Am J Physiol 254:H1081–H1090

    CAS  PubMed  Google Scholar 

  • Jeremy JY, Dandona P (1989) Effect of endothelium removal on stimulatory and inhibitory modulation of rat aortic prostaglandin synthesis. Br J Pharmacol 96:243–250

    PubMed Central  CAS  PubMed  Google Scholar 

  • Legan E, Sisson JA (1990) Method to denude rat aortic endothelium with saponin for phosphoinositide analysis in vascular smooth muscle. J Pharmacol Methods 23:31–39

    CAS  PubMed  Google Scholar 

  • Linz W, Albus U, Wiemer G, Schölkens BA, König W (1986) Atriopeptin III induces endothelium-independent relaxation and increases cGMP levels in rabbit aorta. Klin Wschr 64(Suppl VI):27–30

    CAS  PubMed  Google Scholar 

  • Peach MJ, Singer HA, Loeb AL (1985) Mechanism of endothelium-dependent vascular smooth muscle relaxation. Biochem Pharmacol 34:1867–1874

    CAS  PubMed  Google Scholar 

  • Pelissier T, Miranda HF, Bustamante D, Paelle C, Pinardi G (1992) Removal of the endothelial layer in perfused mesenteric vascular bed of the rat. J Pharmacol Methods 27:41–44

    CAS  Google Scholar 

  • Pörsti I, Bara AT, Busse R, Hecker M (1994) Release of nitric oxide by angiotensin-(1–7) from porcine coronary endothelium: implications for a novel angiotensin receptor. Br J Pharmacol 111:652–654

    PubMed Central  PubMed  Google Scholar 

  • Ren LM, Nakane T, Chiba S (1993) Muscarinic receptor subtypes mediating vasodilation and vasoconstriction in isolated, perfused simian coronary arteries. J Cardiovasc Pharmacol 22:841–846

    CAS  PubMed  Google Scholar 

  • Reynolds EE, Mok LLS (1990) Role of thromboxane A2/prostaglandin H2 receptor in the vasoconstrictor response of rat aorta to endothelin. J Pharmacol Exp Ther 252:915–921

    CAS  PubMed  Google Scholar 

  • Scivoletto R, Carvalho MHC (1984) Cardionatrin causes vasodilation in vitro which is not dependent on the presence of endothelial cells. Eur J Pharmacol 101:143–145

    CAS  PubMed  Google Scholar 

  • Terrón JA (1996) GR127935 is a potent antagonist of the 5-HT1-like receptor mediating contraction in the canine coronary artery. Eur J Pharmacol 300:109–112

    PubMed  Google Scholar 

  • Tracey WR, Linden J, Peach MJ, Johns RA (1990) Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. J Pharmacol Exp Ther 252:922–928

    CAS  PubMed  Google Scholar 

  • Wiemer G, Becker RHA, Jablonka B, Rosenkranz G, Schölkens BA, Linz W (1992) Effects of converting enzyme inhibitors and the calcium antagonist nifedipine alone and in combination on precontracted isolated rabbit aortic rings. Arzneim Forsch/Drug Res 42:795–797

    CAS  Google Scholar 

Nitric Oxide Formation by Cultured Endothelial Cells

  • Böger RH, Bode-Böger SM (2001) The clinical pharmacology of l-arginine. Annu Rev Pharmacol Toxicol 41:79–99

    PubMed  Google Scholar 

  • Bogle RG, Coade SB, Moncada S, Pearson JD, Mann GE (1992) Bradykinin stimulates l-arginine transport and nitric oxide release in vascular endothelial cells. formation in cytokinetreated rat hepatocytes and in blood and liver during sepsis. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 80–84

    Google Scholar 

  • Busse R, Lamontagne D (1991) Endothelium-derived bradykinin is responsible for the increase in calcium produced by angiotensin-converting enzyme inhibitors in human endothelial cells. Naunyn-Schmiedeberg’s Arch Pharmacol 344:126–129

    CAS  Google Scholar 

  • Feelisch M, Noack E (1987) Nitric oxide (NO) formation from nitrovasodilators occurs independently of hemoglobin or non-heme iron. Eur J Pharmacol 142:465–469

    CAS  PubMed  Google Scholar 

  • Gabriel C, Camins A, Sureda FX, Aquirre L, Escubedo E, Pallàs M, Camarasa J (1997) Determination of nitric oxide generation in mammalian neurons using dichlorofluorescin diacetate and flow cytometry. J Pharmacol Toxicol Meth 38:93–98

    CAS  Google Scholar 

  • Gerzer R, Hofmann F, Schultz G (1981) Purification of a soluble, sodium-nitroprusside-stimulated guanylate cyclase from bovine lung. Eur J Biochem 116:479–486

    CAS  PubMed  Google Scholar 

  • Griffiths MJD, Messent M, McAllister RJ, Evans TW (1993) Aminoguanidine selectively inhibits inducible nitric oxide synthase. Br J Pharmacol 110:963–968

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heath R, Brynat B, Horton JK (1992) Which cyclic GMP assay? In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 98–102

    Google Scholar 

  • Hecker M, Boese M, Schini-Kerth VB, Mülsch A, Busse R (1995) Characterization of the stable l-arginine-derived relaxing factor released from cytokine-stimulated vascular smooth muscle cells as an N G-hydroxy-l-arginine-nitric oxide adduct. Proc Natl Acad Sci U S A 92:4671–4675

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G, Henke S, Breipohl G, König W, Knolle J, Schölkens BA (1991) Hoe 140 a new potent and long acting bradykinin antagonist: in vitro studies. Br J Pharmacol 102:769–773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Holzmann S, Kukovetz WR, Windischhofer W, Paschke E, Graier WF (1994) Pharmacologic differentiation between endothelium-dependent relaxations sensitive and resistant to nitro-l-arginine in coronary arteries. J Cardiovasc Pharmacol 23:747–756

    CAS  PubMed  Google Scholar 

  • Ichimori K, Pronai L, Fukahori M, Arroyo CM, Nakzawa H (1992) Spin trapping/electron paramagnetic spectroscopy analysis of endothelium-derived relaxing factors and their intermediates in human platelets. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 68–69

    Google Scholar 

  • Ishida Y, Hashimoto M, Fukushima S, Masumura S, Sasaki T, Nakayama K, Tamura K, Murakami E, Isokawa S, Momose K (1996) A nitric oxide-sensitive electrode: requirement of lower oxygen concentration for detecting nitric oxide from the tissue. J Pharmacol Toxicol Meth 35:19–24

    CAS  Google Scholar 

  • Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. J Clin Invest 52:2745–2756

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lancester JR Jr, Stadler J, Billiar TR, Bergonia HA, Kim YM, Piette LH, Simmons RL (1992) Electron-paramagnetic resonance detection of iron-nitrosyl formation in cytokine-treated rat hepatocytes and in blood and liver during sepsis. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 76–80

    Google Scholar 

  • Linz W, Wiemer G, Schölkens BA (1992) ACE-inhibition induces NO-formation in cultured bovine endothelial cells and protects isolated ischemic rat hearts. J Mol Cell Cardiol 24:909–919

    CAS  PubMed  Google Scholar 

  • Linz W, Wohlfart P, Schoelkens BA, Becker RHA, Malinski T, Wiemer G (1999) Late treatment with ramipril increases survival in old spontaneously hypertensive rats. Hypertension 34:291–295

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lückhoff A, Pohl U, Mülsch A, Busse R (1988) Differential role of extra- and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol 95:189–196

    PubMed Central  PubMed  Google Scholar 

  • Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676–678

    CAS  PubMed  Google Scholar 

  • Malinski T, Huk I (2001) Measurement of nitric oxide in single cells and tissue using a porphyrinic microsensor. Curr Protoc Neurosci Chapter 7:Unit7.14

    Google Scholar 

  • Malinski T (2015) Using nanosensors for in situ monitoring and measurement of nitric oxide and peroxynitrite in a single cell. Methods Mol Biol 1208:139–155

    PubMed  Google Scholar 

  • Moncada S, Palmer RMJ, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    Google Scholar 

  • Mordvintcev P, Mülsch A, Busse R, Vanin A (1991) On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal Biochem 19:142–146

    Google Scholar 

  • Mülsch A, Böhme E, Busse R (1987) Stimulation of soluble guanylate cyclase by endothelium-derived relaxing factor from cultured endothelial cells. Eur J Pharmacol 135:247–250

    PubMed  Google Scholar 

  • Nakazawa H, Fukahori M, Murata T, Furuya T (1992) Online monitoring of nitric oxide generation from isolated perfused rat lung using decrease in superoxide-dependent chemiluminescence. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, p 69

    Google Scholar 

  • Nathan C (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064

    CAS  PubMed  Google Scholar 

  • Rosales OR, Isales CM, Barrett PQ, Brophy C, Sumpio BE (1997) Exposure of endothelial cells to cyclic strain induces elevations of cytosolic Ca2+ concentration through mobilization of intracellular and extracellular pools. Biochem J 326:385–392

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shephard JT, Vanhoutte PM (1991) Endothelium-derived relaxing (EDRF) and contracting factors (EDCF) in the control of cardiovascular homeostasis: the pioneering observations. In: Rubanyi GM (ed) Cardiovascular significance of Endothelium-Derived vasoactive factors. Futura Publ Comp, Mount Kisco, pp 39–64

    Google Scholar 

  • Shibuki K (1990) An electrochemical microprobe for detecting nitric oxide release in brain tissue. Neurosci Res 9:69–76

    CAS  PubMed  Google Scholar 

  • Smits GJM, Lefebvre RA (1997) Evaluation of an electrochemical microprobe for direct NO measurement in the rat gastric fundus. J Pharmacol Toxicol Meth 37:97–103

    CAS  Google Scholar 

  • Steel-Goodwin L, Arroyo CM, Gray B, Carmichael AJ (1992) Electron paramagnetic resonance detection of nitric oxide-dependent spin adducts in mouse jejunum. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 80–84

    Google Scholar 

  • Sumpio BE, Banes AJ, Levin LG, Johnson G Jr (1987) Mechanical stress stimulates aortic endothelial cells to proliferate. J Vasc Surg 6:252–256

    CAS  PubMed  Google Scholar 

  • Wiemer G, Schölkens BA, Becker RHA, Busse R (1991) Ramiprilat enhances endothelial autacoid formation by inhibiting breakdown of endothelium derived bradykinin. Hypertension 18:558–563

    CAS  PubMed  Google Scholar 

  • Wiemer G, Popp R, Schölkens BA, Gögelein H (1994) Enhancement of cytosolic calcium, prostaglandin and nitric oxide by bradykinin and the ACE inhibitor ramiprilate in porcine brain capillary endothelial cells. Brain Res 638:261–266

    CAS  PubMed  Google Scholar 

Expression of Nitric Oxide Synthase

  • Baynosa RC, Naig AL, Murphy PS, Fang XH, Stephenson LL, Khiabani KT, Wang WZ, Zamboni WA (2013) The effect of hyperbaric oxygen on nitric oxide synthase activity and expression in ischemia-reperfusion injury. J Surg Res 183(1):355–361

    CAS  PubMed  Google Scholar 

  • Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1998) Hydralazine prevents endothelial dysfunction, but not the increase in superoxide production in nitric oxide-deficient hypertension. Eur J Pharmacol 362:77–81

    CAS  PubMed  Google Scholar 

  • Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression. Role of enhanced vascular superoxide production. Circulation 100:292–298

    CAS  PubMed  Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method for RNA isolation by acid guanidium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    CAS  PubMed  Google Scholar 

  • Förstermann U, Schmidt HHHW, Pollock JS, Sheng H, Mitchell JA, Warner TD, Murad F (1992) Characterization and classification of constitutive and inducible isoforms of nitric oxide synthase in various cell types. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 21–23

    Google Scholar 

  • Förstermann U, Kleinert H (1995) Nitric oxide synthase: expression and expressional control of the three isoforms. Naunyn-Schmiedeberg’s Arch Pharmacol 352:351–364

    Google Scholar 

  • Fukuto JM, Chaudhuri G (1995) Inhibition of constitutive and inducible nitric oxide synthase: potential selective inhibition. Annu Rev Pharmacol Toxicol 35:165–194

    CAS  PubMed  Google Scholar 

  • Hevel JM, White KA, Marletta MA (1992) Purification of the inducible murine macrophage nitric oxide synthase: identification as a flavoprotein and detection of enzyme-bound tetrahydrobiopterin. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 19–21

    Google Scholar 

  • Knowles RG, Moncada S (1994) Nitric oxide synthases in mammals. Biochem J 298:249–258

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leone AM, Palmer RMJ, Knowles RG, Francis PL, Ashton DS, Moncada S (1992) Molecular oxygen is incorporated in nitric oxide and citrulline by constitutive and inducible nitric oxide synthases. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 7–14

    Google Scholar 

  • Linz W, Jessen T, Becker RHA, Schölkens BA, Wiemer G (1997) Long-term ACE inhibition doubles lifespan of hypertensive rats. Circulation 96:3164–3172

    CAS  PubMed  Google Scholar 

  • Linz W, Wohlfart P, Schoelkens BA, Becker RHA, Malinski T, Wiemer G (1999) Late treatment with ramipril increases survival in old spontaneously hypertensive rats. Hypertension 34:291–295

    Google Scholar 

  • Lund DD, Faraci FM, Miller FJ Jr, Heistad DD (2000) Gene transfer of endothelial nitric oxide synthase improves relaxation of carotid arteries from diabetic rabbits. Circulation 101:1027–1033

    CAS  PubMed  Google Scholar 

  • Martins MA, Moss MB, Mendes IK, Aguila MB, Mandarim-de-Lacerda CA, Brunini TM, Mendes-Ribeiro AC (2014) Role of dietary fish oil on nitric oxide synthase activity and oxidative status in mice red blood cells. Food Funct 5(12):3208–3215

    CAS  PubMed  Google Scholar 

  • Mayer B, John M, Heinzel B, Klatt P, Werner ER, Böhme E (1992) Properties of Ca2+-regulated brain nitric oxide synthase. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 4–6

    Google Scholar 

  • McCall TB, Feelisch M, Palmer RMJ, Moncada S (1991) Identification of N-iminoethyl-l-ornithine as an irreversible inhibitor of nitric oxide synthase in phagocytic cells. Br J Pharmacol 102:234–238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moore PK, Wallace P, Gaffen Z, Hart SL, Babbedge RC (1993) Characterization of the novel nitric oxide synthase inhibitor 7-nitroindazole and related indazoles: antinociceptive and cardiovascular effects. Br J Pharmacol 110:219–224

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moro MA, de Alba J, Leza JC, Lorenzo P, Fernández AP, Bentura ML, Boscá L, Lizasoain I (1998) Neuronal expression of inducible nitric oxide synthase after oxygen and glucose deprivation in rat forebrain slices. Eur J Neurosci 10:445–456

    CAS  PubMed  Google Scholar 

  • Mungrue IN, Husain M, Stewart DJ (2002) The role of NOS in heart failure. Lessons from murine genetic models. Heart Fail Rev 7:407–422

    CAS  PubMed  Google Scholar 

  • Mungrue IN, Bredt DS, Stewart DJ, Husain M (2003) From molecules to mammals: what’s NOS got to do with it ? Acta Physiol Scand 179:123–135

    CAS  PubMed  Google Scholar 

  • Nakane M, Klinghöfer V, Kuk JE, Donnelly JL, Budzik GP, Pollock JS, Basha F, Carter GW (1995) Novel potent and selective inhibitors of inducible nitric oxide synthase. Mol Pharmacol 47:831–834

    CAS  PubMed  Google Scholar 

  • Pollock JS, Mitchell JA, Warner TD, Schmidt HHHW, Nakana M, Förstermann U, Murad F (1992) Purification of nitric oxide synthases from endothelial cells. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 108–111

    Google Scholar 

  • Salter M, Knowles RG, Moncada S (1992) Widespread tissue distribution, species distribution and changes in activity of Ca2+-dependent and Ca2+-independent nitric oxide synthases. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 193–197

    Google Scholar 

  • Schmidt HHHW, Smith RM, Nakana M, Gagne GD, Miller MF, Pollock JS, Sheng H, Förstermann U, Murad F (1992) Type I nitric oxide synthase: purification, characterization and immunohistochemical localization. In: Moncada S, Marletta MA, Hibbs JB Jr, Higgs EA (eds) The biology of nitric oxide. 2. Enzymology, biochemistry and immunology. Portland Press, London/Chapel Hill, pp 112–114

    Google Scholar 

  • Vargas HM, Cuevas JM, Ignarro LJ, Chaudhuri G (1991) Comparison of the inhibitory potencies of N(G)-methyl-, N(G)-nitro- and N(G)-amino-l-arginine on EDRF formation in the rat: evidence for continuous basal EDRF release. J Pharmacol Exp Ther 257:1208–1215

    CAS  PubMed  Google Scholar 

  • Von der Leyen HE, Gibbbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Kaneda Y, Cooke JP, Dzau VJ (1995) Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A 92:1137–1141

    PubMed Central  PubMed  Google Scholar 

Inhibition of Rho Kinase

  • Budzyn K, Marley PD, Sobey CG (2006) Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 27:97–104

    CAS  PubMed  Google Scholar 

  • Ishizaki T, Naito M, Fujisawa K, Maekawa M, Watanabe N, Saito Y, Narumiya S (1997) p160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404:118–124

    CAS  PubMed  Google Scholar 

  • Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of Rho-associated kinases. Mol Pharmacol 57:976–983

    CAS  PubMed  Google Scholar 

  • Ito K, Hirooka Y, Sakai K, Kishi T, Kaibuchi K, Shimokawa H, Takeshita A (2003) Rho/Rho-kinase pathway in brain stem contributes to blood pressure regulation via sympathetic nervous system. Possible involvement of neural mechanisms of hypertension. Circ Res 92:1337–13343

    CAS  PubMed  Google Scholar 

  • Ito K, Hirooka Y, Kishi T, Kimura Y, Kaibuchi K, Shimokawa H, Takeshita A (2004) Rho/Rho-kinase pathway in the brain stem contributes to hypertension caused by chronic nitric oxide synthase inhibition. Hypertension 43:156–162

    CAS  PubMed  Google Scholar 

  • Kobayashi N, Horinaka S, Mita SI, Nakano S, Honda T, Yoshida K, Kobayashi T, Matsuoka H (2002) Critical role of Rho-kinase pathway for cardiac performance and remodeling in failing rat hearts. Cardiovasc Res 55:757–767

    CAS  PubMed  Google Scholar 

  • Nakakuki T, Ito M, Iwasaki H, Kureishi Y, Okamoto R, Moriki N, Kongo M, Kato S, Yamada N, Isaka N, Nakano T (2005) Rho/Rho-kinase pathway contributes to C-reactive protein-induced plasminogen activator inhibitor-1 expression in endothelial cells. Arterioscler Thromb Vasc Biol 25:2088–2093

    CAS  PubMed  Google Scholar 

  • Shimokawa H (2002) Rho-kinase as a novel therapeutic target in treatment of cardiovascular disease. J Cardiovasc Pharmacol 39:319–327

    CAS  PubMed  Google Scholar 

  • Winaver J, Ovcharenko E, Rubinstein I, Gurbanov K, Pollesello P, Bishara B, Hoffman A, Abassi Z (2006) Involvement of Rho kinase pathway in the mechanisms of renal vasoconstriction and cardiac hypertrophy in rats with experimental heart failure. Am J Physiol 290:H2007–H2014

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gralinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gralinski, M., Neves, L.A.A., Tiniakova, O. (2016). NO Activity and Rho Kinase Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_143

Download citation

Publish with us

Policies and ethics