Skip to main content

In Vivo or Ex Vivo Models of Thromobis

  • Reference work entry
Drug Discovery and Evaluation: Pharmacological Assays
  • 190 Accesses

Abstract

In vitro model systems are limited in assessing the impact of global or systemic factors that propagate coagulation and/or platelet activation. Clinically relevant model systems of thrombosis are crucial in assessing the impact of both local (vascular endothelium, atherosclerosis, and other local factors) and systemic factors responsible for coagulation and platelet activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

In Vivo or Ex Vivo Models of Thrombosis

  • Callas DD, Bacher P, Fareed J (1995) Studies on the thrombogenic effects of recombinant tissue factor: in vivo versus ex vivo findings. Semin Thromb Hemost 21(2):166–176

    CAS  PubMed  Google Scholar 

  • Carrie D, Caranobe C, Saivin S et al (1994) Pharmacokinetic and antithrombotic properties of two pentasaccharides with high affinity to antithrombin III in the rabbit: comparison with CY 216. Blood 84(8):2571–2577

    CAS  PubMed  Google Scholar 

  • Didisheim P (1972) Animal models useful in the study of thrombosis and antithrombotic agents. Prog Hemost Thromb 1:165–197

    CAS  PubMed  Google Scholar 

  • Kaiser B, Kirchmaier CM, Breddin HK, Fu K, Fareed J (1999) Preclinical biochemistry and pharmacology of low molecular weight heparins in vivo–studies of venous and arterial thrombosis. Semin Thromb Hemost 25(Suppl 3):35–42

    CAS  PubMed  Google Scholar 

  • Leadley RJ, Chi L, Rebello SS, Gagnon A (2000) Contribution of in vivo models of thrombosis to the discovery and development of novel antithrombotic agents. J Pharmacol Toxicol Methods 43:101–116

    CAS  PubMed  Google Scholar 

  • Meuleman DG, Hobbelen PM, Van Dinther TG et al (1991) Antifactor Xa activity and antithrombotic activity in rats of structural analogues of the minimum antithrombin III binding sequence: discovery of compounds with a longer duration of action than the natural pentasaccharide. Semin Thromb Hemost 17(Suppl 1):112–117

    PubMed  Google Scholar 

  • Millet J, Theveniaux J, Brown NL (1994) The venous antithrombotic profile of naroparcil in the rabbit. Thromb Haemost 72(6):874–879

    CAS  PubMed  Google Scholar 

  • Mousa SA, Bozarth JM, Edwards S, Carroll T, Barrett J (1998) Novel technetium-99m-labeled platelet GPIIb/IIIa receptor antagonists as potential imaging agents for venous and arterial thrombosis. Coron Artery Dis 9(2–3):131–141

    CAS  PubMed  Google Scholar 

  • Perzborn E, Strassburger J, Wilmen A, Pohlmann J, Roehrig S, Schlemmer KH, Straub A (2005) In vitro and in vivo studies of the novel antithrombotic agent BAY 59–7939–an oral, direct Factor Xa inhibitor. J Thromb Haemost 3(3):514–521

    CAS  PubMed  Google Scholar 

  • Virchow R (1856) Ãœber die Verstopfung der Lungenarterie. In: Gesammelte Abhandlungen zur wissenschaftlichen Medizin. Meidinger Sohn, Frankfurt, S 221

    Google Scholar 

  • Vlasuk GP, Ramjit D, Fujita T et al (1991) Comparison of the in vivo anticoagulant properties of standard heparin and the highly selective factor Xa inhibitors antistasin and tick anticoagulant peptide (TAP) in a rabbit model of venous thrombosis. Thromb Haemost 65(3):257–262

    CAS  PubMed  Google Scholar 

  • Walenga JM, Fareed J, Petitou M et al (1986) Intravenous antithrombotic activity of a synthetic heparin pentasaccharide in a human serum induced stasis thrombosis model. Thromb Res 43(2):243–248

    CAS  PubMed  Google Scholar 

  • Wessler S, Reimer SM, Sheps MC (1959) Biologic assay of a thrombosis-inducing activity in human serum. J Appl Physiol 14:943–946

    CAS  PubMed  Google Scholar 

Stenosis- and Mechanical Injury-Induced Coronary Thrombosis: Folts Model

  • Al-Wathiqui MH, Hartman JC, Brooks HL, Warltier DC (1988) Induction of cyclic flow reduction in the coronary, carotid, and femoral arteries of conscious chronically instrumented dogs: a model for investigating the role of platelets in severely constricted arteries. J Pharmacol Methods 20:85–92

    CAS  PubMed  Google Scholar 

  • Apprill P, Schmitz JM, Campbell WB et al (1985) Cyclic blood flow variations induced by platelet-activating factor in stenosed canine coronary arteries despite inhibition of thromboxane synthetase, serotonin receptors, and α-adrenergic receptors. Circulation 72:397–405

    CAS  PubMed  Google Scholar 

  • Benedict CR, Mathew B, Rex KA et al (1986) Correlation of plasma serotonin changes with platelet aggregation in an in vivo dog model of spontaneous occlusive coronary thrombus formation. Circ Res 58:58–67

    CAS  PubMed  Google Scholar 

  • Bush LR, Patrick D (1986) The role of the endothelium in arterial thrombosis and the influence of antithrombotic therapy. Drug Dev Res 7:319–340

    CAS  Google Scholar 

  • Coller BS, Smith SR, Scudder LE et al (1989) Abolition of in vivo platelet thrombus formation in primates with monoclonal antibodies to the platelet GP IIb/IIIa receptor: correlation with bleeding time, platelet aggregation and blockade of GP IIb/IIIa receptors. Circulation 80:1766–1774

    CAS  PubMed  Google Scholar 

  • Folts JD (1991) An in vivo model of experimental arterial stenosis, intimal damage, and periodic thrombosis. Circulation 83(Suppl IV):IV-3–IV-14

    CAS  Google Scholar 

  • Folts JD, Rowe GG (1974) Cyclical reductions in coronary blood flow in coronary arteries with fixed partial obstruction and their inhibition with aspirin. Fed Proc 33:413

    Google Scholar 

  • Folts JD, Rowe GG (1988) Epinephrine reverses aspirin inhibition of in vivo platelet thrombus formation in stenosed dog coronary arteries. Thromb Res 50:507–516

    CAS  PubMed  Google Scholar 

  • Folts JD, Crowell EB, Rowe GG (1976) Platelet aggregation in partially obstructed vessels and its elimination with aspirin. Circulation 54:365–370

    CAS  PubMed  Google Scholar 

  • Folts JD, Gallagher K, Rowe GG (1982) Blood flow reductions in stenosed canine coronary arteries: vasospasm or platelet aggregation? Circulation 65:248–255

    CAS  PubMed  Google Scholar 

  • Ikeda H, Ueyama T, Murohara T et al (1999) Adhesive interaction between P-selectin and sialyl Lewis X plays an important role in recurrent coronary arterial thrombosis in dogs. Arterioscler Thromb Vasc Biol 19:1083–1090

    CAS  PubMed  Google Scholar 

  • Jackson CV, Bailey BD, Shetler TJ (2000) Pharmacological profile of recombinant human activated protein C (LY203638) in a canine model of coronary artery thrombosis. J Pharmacol Exp Ther 295:957–971

    Google Scholar 

  • Just M, Schönafinger K (1991) Antithrombotic properties of a novel sydnonimine derivative. J Cardiovasc Pharmacol 17(Suppl 3):S121–S126

    CAS  Google Scholar 

  • Leadley RJ, Kasiewski CJ, Bostwick JS et al (1998) Inhibition of repetitive thrombus formation in the stenosed canine coronary artery by enoxaparin, but not by unfractionated heparin. Arterioscler Thromb Vasc Biol 18:908–914

    CAS  PubMed  Google Scholar 

  • Mehta JL, Chen L, Nichols WW et al (1998) Melagatran, an oral active-site inhibitor of thrombin, prevents or delays formation of electrically induced occlusive thrombus in the canine coronary artery. J Cardiovasc Pharmacol 31:345–351

    CAS  PubMed  Google Scholar 

  • Mousa SA, DeGrado WF, Mu D-X et al (1996) Oral antiplatelet antithrombotic efficacy of DMP 728, a novel platelet GPIIb/IIIa antagonist. Circulation 93:537–543

    CAS  PubMed  Google Scholar 

  • Romson JL, Hook BG, Lucchesi BR (1980a) Potentiation of the antithrombotic effect of prostacyclin by simultaneous administration of aminophylline in a canine model of coronary artery thrombosis. J Pharmacol Exp Ther 227:288–294

    Google Scholar 

  • Romson JL, Haack DW, Lucchesi BR (1980b) Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti-thrombotic agents. Thromb Res 17:841–853

    CAS  PubMed  Google Scholar 

  • Ruebsamen K, Kirchengast M (1998) Thrombin inhibition and intracoronary thrombus formation: effect of polyethylene glycol-coupled hirudin in the stenosed, locally injured canine coronary artery. Coron Artery Dis 9:35–42

    Google Scholar 

  • Uchida Y, Yoshimoto N, Murao S (1975) Cyclic fluctuations in coronary blood pressure and flow induced by coronary artery constriction. Jpn Heart J 16:454–464

    CAS  PubMed  Google Scholar 

  • Warltier DC, Lamping KA, Pelc LR, Gross GJ (1987) A canine model of thrombin-induced coronary artery thrombosis: effects of intracoronary streptokinase on regional myocardial blood flow, contractile function, and infarct size. J Pharmacol Methods 18:305–318

    CAS  PubMed  Google Scholar 

Stenosis- and Mechanical Injury-Induced Arterial and Venous Thrombosis: Harbauer-Model

  • Bevilacqua C, Finesso M, Prosdocimi M (1991) Acute carotid artery occlusive thrombosis and its pharmacological prevention in the rabbit. Thromb Res 62:263–273

    CAS  PubMed  Google Scholar 

  • Harbauer G, Allendorf A (1988) Experimental investigations on the thrombosis-preventing effect of low-molecular-weight heparins. Haemostasis 18(Suppl 3):69–72

    CAS  PubMed  Google Scholar 

  • Harbauer G, Hiller W, Hellstern P (1984) Ein experimentelles Modell der venösen Thrombose am Kaninchen: Ãœberprüfung seiner Brauchbarkeit mit Low Dose Heparin [An experimental model of venous thrombosis in the rabbit: test of its usefulness with low-dose heparin]. In: Koslowski L (ed) Chirurgisches Forum ‘84 für experimentelle und klinische Forschung. Springer, Berlin/Heidelberg/New York/Tokyo, pp 69–72

    Google Scholar 

  • Just M (1986) Pharmakologische Beeinflussung einer experimentellen Thrombose beim Kaninchen [Influence of various agents on experimental thrombosis in the rabbit]. In: Wenzel E, Hellstern P, Morgenstern E et al (eds) Rationelle Therapie und Diagnose von hämorrhagischen und thrombophilen Diathesen. Schattauer, Stuttgart/New York, pp 4.95–4.98

    Google Scholar 

  • Lindenblatt N, Menger MD, Klar E, Vollmar B (2005) Sustained hypothermia accelerates microvascular thrombus formation in mice. Am J Physiol Heart Circ Physiol 289(6):H2680–H2687

    CAS  PubMed  Google Scholar 

  • Lyle EM, Fujita T, Conner MW et al (1995) Effect of inhibitors of factor Xa or platelet adhesion, heparin, and aspirin on platelet deposition in an atherosclerotic rabbit model of angioplasty injury. J Pharmacol Toxicol Methods 33:53–61

    CAS  PubMed  Google Scholar 

  • Meng K (1975) Tierexperimentelle Untersuchungen zur antithrombotischen Wirkung von Acetylsalicylsäure. Ther Ber 47:69–79

    Google Scholar 

  • Meng K, Seuter F (1977) Effect of acetylsalicylic acid on experimentally induced arterial thrombosis in rats. Naunyn-Schmiedeberg’s Arch Pharmacol 301:115–119

    CAS  Google Scholar 

  • Seuter F, Busse WD, Meng K et al (1979) The antithrombotic activity of BAY g 6575. Arzneim Forsch/Drug Res 29:54–59

    CAS  Google Scholar 

  • Spokas EG, Wun TC (1992) Venous thrombosis produced in the vena cava of rabbits by vascular damage and stasis. J Pharmacol Toxicol Methods 27:225–232

    CAS  PubMed  Google Scholar 

Electrical-Induced Thrombosis

  • Benedict CR, Mathew B, Rex KA et al (1986) Correlation of plasma serotonin changes with platelet aggregation in an in vivo dog model of spontaneous occlusive coronary thrombus formation. Circ Res 58:58–67

    CAS  PubMed  Google Scholar 

  • Guarini S (1996) A highly reproducible model of arterial thrombosis in rats. J Pharmacol Toxicol Methods 35:101–105

    CAS  PubMed  Google Scholar 

  • Hladovec J (1973) Experimental arterial thrombosis in rats with continuous registration. Thromb Diath Haemorrh 29:407–410

    Google Scholar 

  • Lutz BR, Fulton GP, Akers RP (1951) White thromboembolism in the hamster cheek pouch after trauma, infection and neoplasia. Circulation 3:339–351

    CAS  PubMed  Google Scholar 

  • Mousa SA, Kapil R, Mu DX (1999) Intravenous and oral antithrombotic efficacy of the novel platelet GPIIb/IIIa antagonist roxifiban (DMP754) and its free acid form, XV459. Arterioscler Thromb Vasc Biol 19(10):2535–2541

    CAS  PubMed  Google Scholar 

  • Philp RB, Francey I, Warren BA (1978) Comparison of antithrombotic activity of heparin, ASA, sulfinpyrazone and VK 744 in a rat model of arterial thrombosis. Haemostasis 7:282–293

    CAS  PubMed  Google Scholar 

  • Romson JL, Haack DW, Lucchesi BR (1980) Electrical induction of coronary artery thrombosis in the ambulatory canine: a model for in vivo evaluation of anti-thrombotic agents. Thromb Res 17:841–853

    CAS  PubMed  Google Scholar 

  • Rote WE, Mu DX, Roncinske RA et al (1993) Prevention of experimental carotid artery thrombosis by Applagin. J Pharmacol Exp Ther 267:809–814

    CAS  PubMed  Google Scholar 

  • Rote WE, Davis JH, Mousa SA et al (1994) Antithrombotic effects of DMP 728, a platelet GPIIb/IIIa receptor antagonist, in a canine model of arterial thrombosis. J Cardiovasc Pharmacol 23:681–689

    CAS  PubMed  Google Scholar 

  • Salazah AE (1961) Experimental myocardial infarction, induction of coronary thrombosis in the intact closed-chest dog. Circ Res 9:1351–1356

    Google Scholar 

  • Sawyer PN, Pate JW (1953) Bioelectric phenomena as an etiologic factor in intravascular thrombosis. Am J Physiol 175:103–107

    CAS  PubMed  Google Scholar 

  • Sawyer PN, Pate JW, Weldon CS (1953) Relations of abnormal and injury electric potential differences to intravascular thrombosis. Am J Physiol 9:108–112

    Google Scholar 

  • Schumacher WA, Steinbacher TE, Megill JR, Durham SK (1996) A ferret model of electrical-induction of arterial thrombosis that is sensitive to aspirin. J Pharmacol Toxicol Methods 35:3–10

    CAS  PubMed  Google Scholar 

  • Sturgeon SA, Jones C, Angus JA, Wright CE (2006) Adaptation of the Folts and electrolytic methods of arterial thrombosis for the study of anti-thrombotic molecules in small animals. J Pharmacol Toxicol Methods 53(1):20–29

    CAS  PubMed  Google Scholar 

FeCl3-Induced Thrombosis

  • Broersma RJ, Kutcher LW, Heminger EF (1991) The effect of thrombin inhibition in a rat arterial thrombosis model. Thromb Res 64:405–412

    CAS  PubMed  Google Scholar 

  • Kurz KD, Main BW, Sandusky GE (1990) Rat model of arterial thrombosis induced by ferric chloride. Thromb Res 60:269–280

    CAS  PubMed  Google Scholar 

  • Reimann-Hunziger G (1944) Ãœber experimentelle Thrombose und ihre Behandlung mit Heparin. Schweiz Med Wochenschr 74:66–69

    Google Scholar 

  • Tang Z, Wang Y, Xiao Y, Zhao M, Peng S (2003) Anti-thrombotic activity of PDR, a newly synthesized l-Arg derivative, on three thrombosis models in rats. Thromb Res 110(2–3):127–133

    Google Scholar 

  • Van Giezen JJ, Wahlund G, Nerme J, Abrahamsson T (1997) The Fab-fragment of a PAI-1 inhibiting antibody reduces thrombus size and restores blood flow in a rat model of arterial thrombosis. Thromb Haemost 77:964–969

    PubMed  Google Scholar 

  • Wang X, Smith PL, Hsu MY, Ogletree ML, Schumacher WA (2006) Murine model of ferric chloride-induced vena cava thrombosis: evidence for effect of potato carboxypeptidase inhibitor. J Thromb Haemost 4(2):403–410

    PubMed  Google Scholar 

Thrombin-Induced Clot Formation in Canine Coronary Artery

  • Collen D, Stassen JM, Verstraete M (1983) Thrombolysis with human extrinsic (tissue-type) plasminogen activator in rabbits with experimental jugular vein thrombosis. J Clin Invest 71:368–376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coller BS, Peerschke EI, Scudder LE, Sullivan CA (1983) A murine monoclonal antibody that completely blocks the binding of fibrinogen to platelets produces a thrombasthenic-like state in normal platelets and binds to glycoproteins IIb and/or IIIa. J Clin Invest 72:325–338

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gold HK, Fallon JT, Yasuda T et al (1984) Coronary thrombolysis with recombinant human tissue-type plasminogen activator. Circulation 70:700–707

    CAS  PubMed  Google Scholar 

  • Gold HK, Leinbach RC, Garabedian HD et al (1986) Acute coronary reocclusion after thrombolysis with recombinant human tissue-type plasminogen activator: prevention by a maintenance infusion. Circulation 73:347–352

    CAS  PubMed  Google Scholar 

  • Gold HK, Coller BS, Yasuda T et al (1988) Rapid and sustained coronary artery recanalization with combined bolus injection of recombinant tissue-type plasminogen activator and monoclonal antiplatelet GP IIb/IIIa antibody in a canine preparation. Circulation 77:670–677

    CAS  PubMed  Google Scholar 

  • Goldberg RK, Levine S, Fenster PE (1985) Management of patients after thrombolytic therapy for acute myocardial infarction. Clin Cardiol 8:455–459

    CAS  PubMed  Google Scholar 

  • Kopia GA, Kopaciewicz LJ, Ruffolo RR (1988) Coronary thrombolysis with intravenous streptokinase in the anesthetized dog: a dose–response study. J Pharmacol Exp Ther 244:956–962

    CAS  PubMed  Google Scholar 

  • Shebuski RJ, Storer BL, Fujita T (1988) Effect of thromboxane synthetase inhibition on the thrombolytic action of tissue-type plasminogen activator in a rabbit model of peripheral arterial thrombosis. Thromb Res 52:381–392

    CAS  PubMed  Google Scholar 

  • Yasuda T, Gold HK, Fallon JT et al (1988) Monoclonal antibody against the platelet glycoprotein (GP) IIb/IIIa receptor prevents coronary artery reocclusion after reperfusion with recombinant tissue type plasminogen activator. J Clin Invest 81:1284–1291

    PubMed Central  CAS  PubMed  Google Scholar 

Laser-Induced Thrombosis

  • Arfors KE, Dhall DP, Engeset J et al (1968) Biolaser endothelial trauma as a means of quantifying platelet activity in vivo. Nature 218:887–888

    Google Scholar 

  • Herrmann KS (1983) Platelet aggregation induced in the hamster cheek pouch by a photochemical process with excited fluorescein-isothiocyanate-dextran. Microvasc Res 26:238–249

    CAS  PubMed  Google Scholar 

  • Seiffge D, Kremer E (1984) Antithrombotic effects of pentoxifylline on laser-induced thrombi in rat mesenteric arteries. IRCS Med Sci 12:91–92

    CAS  Google Scholar 

  • Seiffge D, Kremer E (1986) Influence of ADP, blood flow velocity, and vessel diameter on the laser-induced thrombus. Thromb Res 42:331–341

    CAS  PubMed  Google Scholar 

  • Seiffge D, Weithmann U (1987) Surprising effects of the sequential administration of pentoxifylline and low dose acetylsalicylic acid on thrombus formation. Thromb Res 46:371–383

    CAS  PubMed  Google Scholar 

  • Weichert W, Pauliks V, Breddin HK (1983) Laser-induced thrombi in rat mesenteric vessels and antithrombotic drugs. Haemostasis 13:61–71

    CAS  PubMed  Google Scholar 

Photochemical-Induced Thrombosis

  • Herrmann KS (1983) Platelet aggregation induced in the hamster cheek pouch by a photochemical process with excited fluorescein isothiocyanate-Dextran. Microvasc Res 26:238–249

    CAS  PubMed  Google Scholar 

  • Just M, Tripier D, Seiffge D (1991) Antithrombotic effects of recombinant hirudin in different animal models. Haemostasis 21(Suppl 1):80–87

    CAS  PubMed  Google Scholar 

  • Matsuno H, Uematsu T, Nagashima S, Nakashima M (1991) Photochemically induced thrombosis model in rat femoral artery and evaluation of effects of heparin and tissue-type plasminogen activator with use of this model. J Pharmacol Methods 25:303–317

    CAS  PubMed  Google Scholar 

  • Rosenblum WI, El-Sabban F (1977) Platelet aggregation in the cerebral microcirculation: effect of aspirin and other agents. Circ Res 40:320–328

    CAS  PubMed  Google Scholar 

Wire Coil-Induced Thrombosis

  • Bernat A, Vallee E, Maffrand JP (1986) A simple experimental model of thrombolysis in the rat: effect of urokinase and of the complex human plasminogen-streptokinase. Thromb Res 44(Suppl VI):112

    Google Scholar 

  • Just M, Schönafinger K (1991) Antithrombotic properties of a novel sydnonimine derivative. J Cardiovasc Pharmacol 17(Suppl 3):S121–S126

    Google Scholar 

  • Kumada T, Ishihara M, Ogawa H, Abiko Y (1980) Experimental model of venous thrombosis in rats and effect of some agents. Thromb Res 18:189–203

    CAS  PubMed  Google Scholar 

  • Mellot MJ, Stranieri MT, Sitko GR et al (1993) Enhancement of recombinant tissue plasminogen activator-induced reperfusion by recombinant tick anticoagulant peptide, a selective factor Xa inhibitor, in a canine model of femoral artery thrombosis. Fibrinolysis 7:195–202

    Google Scholar 

  • Rübsamen K, Hornberger W (1996) Prevention of early reocclusion after thrombolysis of copper-coil-induced thrombi in the canine coronary artery: comparison of PEG-hirudin and unfractionated heparin. Thromb Haemost 76:105–110

    PubMed  Google Scholar 

  • Stone P, Lord JW (1951) An experimental study of the thrombogenic properties of magnesium-aluminum wire in the dog’s aorta. Surgery 30:987–993

    CAS  PubMed  Google Scholar 

Eversion Graft-Induced Thrombosis

  • Gold HK, Yasuda T, Jang IK et al (1991) Animal models for arterial thrombolysis and prevention of reocclusion: erythrocyte-rich versus platelet-rich thrombus. Circulation 83:IV26–IV403

    CAS  PubMed  Google Scholar 

  • Hergrueter CA, Handren J, Kersh R, May JW (1988) Human recombinant tissue-type plasminogen activator and its effect on microvascular thrombosis in the rabbit. Plast Reconstr Surg 81:418–424

    CAS  PubMed  Google Scholar 

  • Jang IK, Gold HK, Ziskind AA et al (1989) Differential sensitivity of erythrocyte-rich and platelet-rich arterial thrombi to lysis with recombinant tissue-type plasminogen activator. Circulation 79:920–928

    CAS  PubMed  Google Scholar 

  • Jang IK, Gold HK, Ziskind AA et al (1990) Prevention of platelet-rich arterial thrombosis by selective thrombin inhibition. Circulation 81:219–225

    CAS  PubMed  Google Scholar 

Arterio-Venous Shunt Thrombosis

  • Best CH, Cowan C, MacLean DL (1938) Heparin and the formation of white thrombi. J Physiol 92:20–31

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chi L, Rebello S, Lucchesi BR (1999) In vivo models of thrombosis. In: U’Prichard ACG, Gallagher KP (eds) Anti-thrombotics. Springer, Berlin/Heidelberg, pp 101–127

    Google Scholar 

  • Hara T, Yokoyama A, Tanabe K et al (1995) DX-9065a, an orally active, specific inhibitor of factor Xa, inhibits thrombosis without affecting bleeding time in rats. Thromb Haemost 74:635–639

    CAS  PubMed  Google Scholar 

  • Knabb RM, Ketenner CA, Timmermanns PB, Reilly TM (1992) In vivo characterization of a new thrombin inhibitor. Thromb Haemost 67:56–59

    CAS  PubMed  Google Scholar 

  • Rowntree LG, Shionoya T (1927) Studies in extracorporeal thrombosis. I. A method for the direct observation of extracorporeal thrombus formation. II. Thrombosis formation in normal blood in the extracorporeal vascular loop. III. Effects of certain anticoagulants (heparin and hirudin) on extracorporeal thrombosis and on the mechanism of thrombus formation. J Exp Med 46:7–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rukshin V, Azarbal B, Finkelstein A, Shah PK, Cercek B, Tsang V, Kaul S (2003) Effects of GP IIb/IIIa receptor inhibitor tirofiban (aggrastat) in ex vivo canine arteriovenous shunt model of stent thrombosis. J Cardiovasc Pharmacol 41(4):615–624

    CAS  PubMed  Google Scholar 

  • Scott NA, Nunes GL, King SB III et al (1994) Local delivery of an antithrombin inhibits platelet-dependent thrombosis. Circulation 90:1951–1955

    CAS  PubMed  Google Scholar 

  • Tang Z, Wang Y, Xiao Y, Zhao M, Peng S (2003) Anti-thrombotic activity of PDR, a newly synthesized l-Arg derivative, on three thrombosis models in rats. Thromb Res 110(2–3):127–133

    CAS  PubMed  Google Scholar 

  • Yokoyama T, Kelly AB, Marzec UM et al (1995) Antithrombotic effects of orally active synthetic antagonist of activated factor X in nonhuman primates. Circulation 92:485–491

    CAS  PubMed  Google Scholar 

Thread-Induced Venous Thrombosis

  • Chi L, Rebello S, Lucchesi BR (1999) In vivo models of thrombosis. In: U’Prichard ACG, Gallagher KP (eds) Anti-thrombotics. Springer, Berlin/Heidelberg, pp 101–127

    Google Scholar 

  • Hollenbach S, Sinha U, Lin PH et al (1994) A comparative study of prothrombinase and thrombin inhibitors in a novel rabbit model of non-occlusive deep vein thrombosis. Thromb Haemost 71:357–362

    CAS  PubMed  Google Scholar 

  • Hollenbach SJ, Wong AG, Ku P et al (1995) Efficacy of FXa inhibitors in a rabbit model of venous thrombosis. Circulation 92:I486–I487

    Google Scholar 

Thrombus Formation on Super-Fused Tendon

  • Gryglewski RJ, Korbut R, Ocetkiewicz A, Stachura J (1978) In vivo method for quantitation of anti-platelet potency of drugs. Naunyn-Schmiedeberg’s Arch Pharmacol 302:25–30

    CAS  Google Scholar 

Stasis-Induced Thrombosis (Wessler Model)

  • Aronson DL, Thomas DP (1985) Experimental studies on venous thrombosis: effect of coagulants, procoagulants and vessel contusion. Thromb Haemost 54:866–870

    CAS  PubMed  Google Scholar 

  • Biemond BJ, Friederich PW, Levi M et al (1996) Comparison of sustained antithrombotic effects of inhibitors of thrombin and factor Xa in experimental thrombosis. Circulation 93:153–160

    CAS  PubMed  Google Scholar 

  • Breddin HK (1989) Thrombosis and Virchow’s triad: what is established. Semin Thromb Hemost 15:237–239

    CAS  PubMed  Google Scholar 

  • Fareed J, Walenga JM, Kumar A, Rock A (1985) A modified stasis thrombosis model to study the antithrombotic action of heparin and its fractions. Semin Thromb Hemost 11:155–175

    CAS  PubMed  Google Scholar 

  • Levi M, Biemond BJ, VanZonneveld AJ et al (1992) Inhibition of plasminogen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis. Circulation 85:305–312

    CAS  PubMed  Google Scholar 

  • Wessler S (1952) Studies in intravascular coagulation. I. Coagulation changes in isolated venous segments. J Clin Invest 31:1011–1014

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wessler S (1953) Studies in intravascular coagulation. II. A comparison of the effect of dicumarol and heparin on clot formation in isolated venous segments. J Clin Invest 32:650–654

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wessler S (1955a) Studies in intravascular coagulation. III. The pathogenesis of serum-induced venous thrombosis. J Clin Invest 34:647–651

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wessler S (1955b) Studies in intravascular coagulation. IV. The effect of dicumarol and heparin on serum-induced venous thrombosis. Circulation 12:553–556

    CAS  PubMed  Google Scholar 

  • Wessler S (1957) Studies in intravascular coagulation. V. A distinction between the anticoagulant and antithrombotic effects of dicumarol. N Engl J Med 256:1223–1225

    CAS  PubMed  Google Scholar 

  • Wessler S, Reimer SM, Sheps MC (1959) Biological assay of a thrombosis-inducing activity in human serum. J Appl Physiol 14:943–946

    Google Scholar 

Disseminated Intravascular Coagulation (DIC) Model

  • Herbert JM, Bernat A, Dol F et al (1996) DX 9065A, a novel, synthetic selective and orally active inhibitor of factor Xa: in vitro and in vivo studies. J Pharmacol Exp Ther 276:1030–1038

    CAS  PubMed  Google Scholar 

  • Sato K, Kawasaki T, Hisamichi N et al (1998) Antithrombotic effects of YM-60828, a newly synthesized factor Xa inhibitor, in rat thrombosis models and its effects on bleeding time. Br J Pharmacol 123:92–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yamazaki M, Asakura H, Aoshima K et al (1994) Effects of DX-9065a, an orally active, newly synthesized and specific inhibitor of factor Xa, against experimental disseminated intravascular coagulation in rats. Thromb Haemost 72:393–396

    CAS  Google Scholar 

Microvascular Thrombosis in Trauma Models

  • Fu K, Izquierdo R, Vandevender D, Warpeha RL, Wolf H, Fareed J (1997) Topical application of low molecular weight heparin in a rabbit traumatic anastomosis model. Thromb Res 86(5):355–361

    CAS  PubMed  Google Scholar 

  • Korompilias AV, Chen LE, Seaber AV, Urbaniak JR (1997) Antithrombotic potencies of enoxaparin in microvascular surgery: influence of dose and administration methods on patency rate of crushed arterial anastomoses. J Hand Surg [Am]. 22(3):540–546

    CAS  Google Scholar 

  • Stockmans F, Stassen JM, Vermylen J, Hoylaerts MF, Nystrom A (1997) A technique to investigate microvascular mural thrombus formation in arteries and veins: II. Effects of aspirin, heparin, r-hirudin, and G-4120. Ann Plast Surg 38(1):63–68

    CAS  PubMed  Google Scholar 

Cardiopulmonary Bypass Models

  • Callas DD, Bacher P, Fareed J (1995) Studies on the thrombogenic effects of recombinant tissue factor: in vivo versus ex vivo findings. Semin Thromb Hemost 21(2):166–176

    CAS  PubMed  Google Scholar 

  • Carrie D, Caranobe C, Saivin S et al (1994) Pharmacokinetic and antithrombotic properties of two pentasaccharides with high affinity to antithrombin III in the rabbit: comparison with CY 216. Blood 84(8):2571–2577

    CAS  PubMed  Google Scholar 

  • Dewanjee MK, Wu S, Kapadvanjwala M et al (1996) Reduction of platelet thrombi and emboli by l-arginine infusion during cardiopulmonary bypass in a pig model. J Thromb Thrombolysis 3:339–356

    Google Scholar 

  • Fu K, Izquierdo R, Vandevender D et al (1997) Topical application of low molecular weight heparin in a rabbit traumatic anastomosis model. Thromb Res 86(5):355–361

    CAS  PubMed  Google Scholar 

  • Henny CP, TenCate H, TenCate JW (1985) A randomized blind study comparing standard heparin and a new low molecular weight heparinoid in cardiopulmonary bypass surgery in dogs. J Lab Clin Med 106:187–196

    CAS  PubMed  Google Scholar 

  • Korompilias AV, Chen LE, Seaber AV, Urbaniak JR (1997) Antithrombotic potencies of enoxaparin in microvascular surgery: influence of dose and administration methods on patency rate or crushed arterial anastomoses. J Hand Surg 22(3):540–546

    CAS  Google Scholar 

  • Meuleman DG, Hobbelen PM, Van Dinther TG et al (1991) Antifactor Xa activity and antithrombotic activity in rats of structural analogues of the minimum antithrombin III binding sequence: discovery of compounds with a longer duration of action than the natural pentasaccharide. Semin Thromb Hemost 17(Suppl 1):112–117

    Google Scholar 

  • Millet J, Theveniaux J, Brown NL (1994) The venous antithrombotic profile of naroparcil in the rabbit. Thromb Haemost 72(6):874–879

    CAS  PubMed  Google Scholar 

  • Murray WG (1985) A preliminary study of low molecular weight heparin in aortocoronary bypass surgery. In: Murray WG (ed) Low molecular weight heparin in surgical practice [Master of surgery thesis]. University of London, London, p 266

    Google Scholar 

  • Stockmans F, Stassen JM, Vermylen J et al (1997) A technique to investigate mural thrombus formation in arteries and veins: II. Effects of aspirin, heparin, r-hirudin and G-4120. Ann Plastic Surg 38(1):63–68

    Google Scholar 

  • Van Wyk V, Neethling WML, Badenhorst PN, Kotze HF (1998) r-Hirudin inhibits platelet-dependent thrombosis during cardiopulmonary bypass in baboons. J Cardiovasc Surg 39:633–639

    Google Scholar 

  • Vlasuk GP, Ramjit D, Fujita T et al (1991) Comparison of the in vivo anticoagulant properties of standard heparin and the highly selective factor Xa inhibitors antistasin and tick anticoagulant peptide (TAP) in a rabbit model of venous thrombosis. Thromb Haemost 65(3):257–262

    CAS  PubMed  Google Scholar 

  • Walenga JM, Petitou M, Lormeau JC et al (1987) Antithrombotic activity of a synthetic heparin pentasaccharide in a rabbit stasis thrombosis model using different thrombogenic challenges. Thromb Res 46(2):187–198

    CAS  PubMed  Google Scholar 

  • Wessler S, Reimer SM, Sheps MC (1959) Biologic assay of a thrombosis-inducing activity in human serum. J Appl Physiol 14:943–946

    Google Scholar 

Extracorporeal Thrombosis Models

  • Badimon L, Badimon JJ (1989) Mechanism of arterial thrombosis in non-parallel streamlines: platelet thrombi grow on the apex of stenotic severely injured vessel wall. J Clin Invest 84:1134–1144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dangas G, Badimon JJ, Coller BS et al (1998) Administration of abciximab during percutaneous coronary intervention reduces both ex vivo platelet thrombus formation and fibrin deposition. Arterioscler Thromb Vasc Biol 18:1342–1349

    CAS  PubMed  Google Scholar 

  • Ørvim U, Brastad RM, Vlasuk GP, Sakariassen KS (1995) Effect of selective factor Xa inhibition on arterial thrombus formation triggered by tissue factor/factor VIIa or collagen in an ex vivo model of shear-dependent human thrombogenesis. Arterioscler Thromb Vasc Biol 15:2188–2194

    PubMed  Google Scholar 

  • Wysokinski W, McBane R, Chesebro JH, Owen WG (1996) Reversibility of platelet thrombosis in vivo. Thromb Haemost 76:1108–1113

    CAS  PubMed  Google Scholar 

Experimental Thrombocytopenia or Leucocytopenia

  • Angelillo-Scherrer A, deFrutos PG, Aparicio C et al (2001) Deficiency or inhibition of Gas6 causes platelet dysfunction and protects mice against thrombosis. Nat Med 7:215–221

    CAS  PubMed  Google Scholar 

  • Yang J, Wu J, Kowalska MA et al (2000) Loss of signaling through the G protein, Gz, results in abnormal platelet activation and altered responses to psychoactive drugs. Proc Natl Acad Sci U S A 97:9984–9989

    PubMed Central  CAS  PubMed  Google Scholar 

Collagenase-Induced Thrombocytopenia

  • Völkl K-P, Dierichs R (1986) Effect of intravenously injected collagenase on the concentration of circulating platelets in rats. Thromb Res 42:11–20

    PubMed  Google Scholar 

Reversible Intravital Aggregation of Platelets

  • Oyekan AO, Botting JH (1986) A minimally invasive technique for the study of intravascular platelet aggregation in anesthetized rats. J Pharmacol Methods 15:271–277

    CAS  PubMed  Google Scholar 

  • Smith D, Sanjar S, Herd C, Morley J (1989) In vivo method for the assessment of platelet accumulation. J Pharmacol Methods 21:45–59

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaker A. Mousa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Mousa, S.A. (2016). In Vivo or Ex Vivo Models of Thromobis. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_13

Download citation

Publish with us

Policies and ethics