Skip to main content

High-Resolution Inelastic X-Ray Scattering II: Scattering Theory, Harmonic Phonons, and Calculations

Synchrotron Light Sources and Free-Electron Lasers

Abstract

This chapter reviews nonresonant, meV-resolution inelastic X-ray scattering (IXS), as applied to the measurement of atomic dynamics of crystalline materials. In conjunction with a companion paper on spectrometers and sample science (Part I, also in this handbook), it is designed to be an introductory, though in-depth, look at the field for those who may be interested in performing IXS experiments or those desiring a practical introduction to harmonic phonons in crystals at finite momentum transfers. The treatment of most topics emphasizes practical issues, as they have occurred to the author in 15 years spent introducing meV-resolved IXS to Japan, including designing and helping to build two IXS beamlines, spectrometers, and associated instrumentation, performing experiments, and helping users. This chapter, Part II, focuses on more formal aspects of scattering theory and on calculations, emphasizing relations that have been of practical use in experiments. This includes an introduction to many issues related to scattering from harmonic phonons, including basic nomenclature, intensities, anti-crossings, sum rules, and issues related to calculations and modeling. It is designed for a reader who has a basic knowledge of reciprocal space as used in X-ray scattering and wishes to extend this to atomic dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Note that for the purposes of considering atomic dynamics, formulas for neutron scattering can generally be converted to X-ray scattering by replacing the coherent neutron scattering length, b, by ref(Q), where re is the classical radius of the electron, \(\mathrm{r}_{\mathrm{e}} =\mathrm{ e}^{2}/\mathrm{mc}^{2} \sim 2.81\) fm, and f(Q) is the X-ray form factor for the relevant atom or ion at momentum transfer \(Q = \left \vert \mathbf{Q}\right \vert \).

  2. 2.

    We take f to be normalized to Z, the number of electrons in the atom at Q = 0.

  3. 3.

    We emphasize the distinction between a primitive cell as (one of) the smallest repeatable unit whose translation can generate the entire structure, as different from a unit cell that is often larger and is chosen for convenience. For example, the cubic unit cell used to describe diamond contains 8 atoms, while the primitive cell contains only 2 atoms. The phonon dispersion is then described by 6 = 3 × 2 phonon branches, not 3 × 8 = 24. Using the larger cell in a model would cause a lot of unnecessary computation and lead to many phonon branches with zero intensity.

  4. 4.

    The term “pseudo-harmonic” is often used to indicate a harmonic model where the atomic interaction terms are scaled with temperature to account for the effect of thermal expansion. This leads to harmonic phonons at any fixed temperature, but since strictly speaking, a harmonic solid does not undergo thermal expansion, the model termed pseudo-harmonic.

  5. 5.

    In one case a sample with an interesting magnetic structure appeared to show such a violation, but the lack of symmetry in the spectra was eventually traced to a software bug in a counter card driver. The card was actually in use in many places, but there were very few that used it at the low rates of the IXS experiment and, precisely in the low-rate region the software error became noticeable.

  6. 6.

    We generally use boldface quantities to indicate 3-vectors (in either real space or reciprocal space) and dual-arrow superscripts to indicate matrices such as \(\overrightarrow{\overrightarrow{\Phi }}_{\ell d\ell^{{\prime}}d^{{\prime}}}\). In some cases, such as the eigenvector matrix for all atoms, \(\overrightarrow{\mathbf{e}}_{\mathbf{q}}\) a single vector over a boldface quantity indicates an extended 1-dimension matrix of many vectors.

  7. 7.

    While not the main point, the tables/figures in appendix E of Lax (2012) are also useful for labeling points and symmetry directions in reciprocal space.

  8. 8.

    For example, in the case of CaAlSi the presence of a soft mode introduces large differences in the Debye-Waller factor for different atoms, with factors of two easily possible at room temperature (Kuroiwa et al. 2008).

  9. 9.

    Most work, including that here, emphasizes the effect of nonharmonicity on line shapes and frequency, neglecting the effect on polarization. However, such effects must be present, if only in that a nonharmonic shift in the frequency may move a mode closer or further away from anti-crossing, leading to a change in polarization. One would also expect such effects to appear more generally, but the usual treatment separating the intensity and the line shape does not facilitate the discussion. Lovesey (1984, #520), also suggests that direct nonharmonic effects on polarization tend to vanish at high symmetry points of the Brillouin zone.

  10. 10.

    As an exercise, one can replace the Ewald sum by calculating many force-constant matrices out to some range R. As expected one finds the phonon behavior to be generally well predicted until one approaches small momentum transfers (\(\sim \) 1/R).

  11. 11.

    This usage of the term “shell” in the shell model should not be confused with the shells (1st neighbors, second neighbors, etc.) sometimes referred to in BvK models.

References

  • A. Alatas, A. Said, H. Sinn, G. Bortel, M. Hu, J. Zhao, C. Burns, E. Burkel, E. Alp, Atomic form-factor measurements in the low-momentum transfer region for Li, Be, and Al by inelastic X-ray scattering. Phys. Rev. B. 77, 64301 (2008). http://link.aps.org/doi/10.1103/PhysRevB.77.064301, doi:10.1103/PhysRevB.77.064301

  • D. Alfè, PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun. 180, 2622–2633 (2009). http://www.sciencedirect.com/science/article/pii/S0010465509001064, doi:http://dx.doi.org/10.1016/j.cpc.2009.03.010

  • P.B. Allen, V.N. Kostur, N. Takesue, G. Shirane, Neutron-scattering profile of Q > 0 phonons in BCS superconductors. Phys. Rev. B. 56, 5552–5558 (1997). http://link.aps.org/doi/10.1103/PhysRevB.56.5552

  • V. Ambegaokar, J.M. Conway, G. Baym, Inelastic scattering of neutrons by anharmonic crystals, in Lattice Dynamics, ed. by R.F. Wallis (Pergamon, New York, 1965), p. 261

    Google Scholar 

  • A.Q.R. Baron, H. Uchiyama, R. Heid, K.P. Bohnen, Y. Tanaka, S. Tsutsui, D. Ishikawa, S. Lee, S. Tajima, Two-phonon contributions to the inelastic X-ray scattering spectra of MgB_2. Phys. Rev. B. 75, 20504–20505 (2007). http://link.aps.org/abstract/PRB/v75/e020505

  • S. Baroni, S. de Gironcoli, A.D. Corso, P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001)

    Article  ADS  Google Scholar 

  • Bilbao Crystallographic Server http://www.cryst.ehu.es/

  • L. Boeri, E. Cappelluti, L. Pietronero, Three-dimensional MgB2 type superconductivity in hole-doped diamond. Phys. Rev. B. 71, 12501 (2005). http://link.aps.org/doi/10.1103/PhysRevB.71.012501, doi:10.1103/PhysRevB.71.012501

  • M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, Oxford, 1954)

    MATH  Google Scholar 

  • A. Bosak, M. Krisch, Phonon density of states probed by inelastic X-ray scattering. Phys. Rev. B. 72, 224305–224309 (2005). doi:10.1103/PhysRevB.72.224305

    Article  ADS  Google Scholar 

  • A. Bosak, M. Krisch, Inelastic X-ray scattering from phonons under multibeam conditions. Phys. Rev. B. 75, 92302–92304 (2007). doi:10.1103/PhysRevB.75.092302

    Article  ADS  Google Scholar 

  • P. Brüesch, Phonons: Theory and Experiments 1 (Springer, Berlin, 1982)

    Book  Google Scholar 

  • Y. Chen, X. Ai, C.A. Marianetti, First-principles approach to nonlinear lattice dynamics: anomalous spectra in PbTe. Phys. Rev. Lett. 113, 105501 (2014). http://link.aps.org/doi/10.1103/PhysRevLett.113.105501, doi:10.1103/PhysRevLett.113.105501

  • G. Eckold, UNISOFT – A Program Package for Lattice Dynamical Calculations (Kristallographie, RWTH, Aachen, 1993)

    Google Scholar 

  • B. Fak, B. Dorner, On the interpretation of phonon line shapes and excitation energies in neutron scattering experiments. ILL Rep. 92FA008S (1992)

    Google Scholar 

  • B. Fak, B. Dorner, Phonon line shapes and excitation energies. Phys. B. 234–236, 1107–1108 (1997)

    Article  Google Scholar 

  • F. Finkemeier, W. von Niessen, Phonons and phonon localization in a-Si: computational approaches and results for continuous-random-network-derived structures. Phys. Rev. B. 58, 4473–4484 (1998). http://link.aps.org/doi/10.1103/PhysRevB.58.4473, doi:10.1103/PhysRevB.58.4473

  • T. Fukuda, A.Q.R. Baron, H. Nakamura, S. Shamoto, M. Ishikado, M. Machida, H. Uchiyama, A. Iyo, H. Kito, J. Mizuki et al., Soft and isotropic phonons in PrFeAsO1-y. Phys. Rev. B. 84, 64504 (2011). http://link.aps.org/doi/10.1103/PhysRevB.84.064504

  • T. Fukuda, A.Q.R. Baron, S. Shamoto, M. Ishikado, H. Nakamura, M. Machida, H. Uchiyama, S. Tsutsui, A. Iyo, H. Kito et al., Lattice dynamics of LaFeAsO1-xFx and PrFeAsO1-y via inelastic X-ray scattering and first-principles calculation. J. Phys. Soc. Jpn. 77, 103715 (2008)

    Article  ADS  Google Scholar 

  • J.D. Gale, GULP: a computer program for the symmetry-adapted simulation of solids. J. Chem. Soc. Faraday Trans. 93, 629–637 (1997)

    Article  Google Scholar 

  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, A. Dal Corso et al., QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21 (2009). http://www.quantum-espresso.org

  • H.R. Glyde, Momentum distributions and final-state effects in neutron scattering. Phys. Rev. B. 50, 6726 (1994)

    Article  ADS  Google Scholar 

  • X. Gonze, B. Amadon, Anglade, P.-M., Beuken, J.-M., F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote et al., ABINIT?: first-principles approach of materials and nanosystem properties. Comput. Phys. Commun. 180, 2582–2615 (2009). http://www.abinit.org/

  • X. Gonze, C. Lee, Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B. 55, 10355–10368 (1997). http://link.aps.org/doi/10.1103/PhysRevB.55.10355

  • N. Gov, Velocity-dependent interactions and sum rule in bcc He. Phys. Rev. B. 67, 52301 (2003). http://link.aps.org/doi/10.1103/PhysRevB.67.052301

  • O. Gunnarsson, O. Rösch, Interplay between electron-phonon and Coulomb interactions in cuprates. J. Phys. Condens. Matter. 4, 43201 (2008). http://stacks.iop.org/0953-8984/20/043201

  • J. Hafner, M. Krajci, Propagating and confined vibrational excitations in quasicrystals. J. Phys. Condens. Matter 5, 2489 (1993). http://stacks.iop.org/0953-8984/5/i=16/a=008

  • R. Heid, K.-P. Bohnen, Linear response in a density-functional mixed-basis approach. Phys. Rev. B. 60, R3709 (1999)

    Article  ADS  Google Scholar 

  • O. Hellman, I.A. Abrikosov, S.I. Simak, Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B. 84, 180301 (2014). http://link.aps.org/doi/10.1103/PhysRevB.84.180301

  • K. Hinsen, E. Pellegrini, S. Stachura, G.R. Kneller, nMoldyn 3: using task farming for a parallel spectroscopy-oriented analysis of molecular dynamics simulations. J. Comput. Chem. 33, 2043–2048 (2012). http://dirac.cnrs-orleans.fr/nmoldyn/home/

  • P.C. Hohenberg, P.M. Platzman, High-energy neutron scattering from liquid He4. Phys. Rev. 152, 198–200 (1966). http://link.aps.org/doi/10.1103/PhysRev.152.198

  • J.D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley and Sons, New York, 1999)

    MATH  Google Scholar 

  • W. Kohn, Image of the fermi surface in the vibration spectrum of a metal. Phys. Rev. Lett. 2, 393 (1959)

    Article  ADS  Google Scholar 

  • T. Kreibich, E.K.U. Gross, Multicomponent density-functional theory for electrons and nuclei. Phys. Rev. Lett. 86, 2984–2987 (2001). http://link.aps.org/doi/10.1103/PhysRevLett.86.2984

  • S. Kuroiwa, A.Q.R. Baron, T. Muranaka, R. Heid, K.P. Bohnen, J. Akimitsu, Soft-phonon-driven superconductivity in CaAlSi as seen by inelastic X-ray scattering. Phys. Rev. B. 77, 140503–140504 (2008). http://link.aps.org/abstract/PRB/v77/e140503

  • L.J. Sham, Theory of lattice dynamics of covalent crystlas, in Dynamical Properties of Solids, ed. by G.K. Horton, A.A. Maradudin (North-Holland, Amsterdam, 1974), pp. 301–342

    Google Scholar 

  • T. Lan, C.W. Li, J.L. Niedziela, H. Smith, D.L. Abernathy, G.R. Rossman, B. Fultz, Anharmonic lattice dynamics of Ag2O studied by inelastic neutron scattering and first-principles molecular dynamics simulations. Phys. Rev. B. 89, 54306 (2014). http://link.aps.org/doi/10.1103/PhysRevB.89.054306, doi:10.1103/PhysRevB.89.054306

  • M. Lax, Symmetry Principles in Solid State and Molecular Physics (Wiley, New York 1974)

    Google Scholar 

  • M. Lazzeri, F. Mauri, Nonadiabatic Kohn Anomaly in a doped graphene monolayer. Phys. Rev. Lett. 97, 266407 (2006). http://link.aps.org/doi/10.1103/PhysRevLett.97.266407

  • C.W. Li, O. Hellman, J. Ma, A.F. May, H.B. Cao, X. Chen, A.D. Christianson, G. Ehlers, D.J. Singh, B.C. Sales et al., Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics. Phys. Rev. Lett. 112, 175501 (2014). http://link.aps.org/doi/10.1103/PhysRevLett.112.175501, doi:10.1103/PhysRevLett.112.175501

  • S.W. Lovesey, Theory of Neutron Scattering from Condensed Matter (Clarendon Press, Oxford, 1984)

    Google Scholar 

  • G.D. Mahan, Many Particle Physics, 3rd edn. (Plenum Press, New York, 2000)

    Book  Google Scholar 

  • A.A. Maradudin, Crystalline solids, fundamentals, in Dynamical Properties of Solids, ed. by G.K. Horton, A.A. Maradudin (North-Holland, Amsterdam, 1974)

    Google Scholar 

  • A.A. Maradudin, S.H. Vosko, Symmetry properties of the normal vibrations of a crystal. Rev. Mod. Phys. 40, 1–37 (1968). http://link.aps.org/doi/10.1103/RevModPhys.40.1

  • J. Meyer, G. Dolling, R. Scherm, H.R. Glyde, Anharmonic interference effects in potassium. J. Phys. F: Met. Phys. 6, 943–956 (1976).

    Article  ADS  Google Scholar 

  • A. Mirone, OpenPhonon: an open source computer code for lattice-dynamical calculations. http://www.esrf.eu/computing/scientific/OpenPhonon/manual/#foot5

  • G. Monaco, A. Cunsolo, G. Pratesi, F. Sette, R. Verbeni, Deep inelastic atomic scattering of X-rays in liquid neon. Phys. Rev. Lett. 88, 227401–227404 (2002). doi:10.1103/PhysRevLett.88.227401

    Article  ADS  Google Scholar 

  • G. Placzek, The scattering of neutrons by systems of heavy nuclei. Phys. Rev. 86, 377 (1952)

    Article  MATH  ADS  Google Scholar 

  • A.J. Ramirez-Cuesta, aCLIMAX 4.0.1, The new version of the software for analyzing and interpreting INS spectra. Comput. Phys. Commun. 157, 226–238 (2004). http://www.sciencedirect.com/science/article/pii/S0010465503005204, doi:http://dx.doi.org/10.1016/S0010-4655(03)00520-4.

  • M. Sánchez del Río, R.J. Dejus, XOP v2.4: recent developments of the X-ray optics software toolkit. Proc. SPIE 8141, 814115 (2011)

    Google Scholar 

  • G. Shirane, Y. Endoh, R.J. Birgeneau, M.A. Kastner, Y. Hidaka, M. Oda, M. Suzuki, T. Murakami, Two-dimensional antiferromagnetic quantum spin-fluid state in La2CuO4. Phys. Rev. Lett. 59, 1613–1616 (1987). http://link.aps.org/doi/10.1103/PhysRevLett.59.1613

  • S.K. Sinha, Theory of inelastic X-ray scattering from condensed matter. J. Phys. Condens. Matter 13, 7511 (2001)

    Article  ADS  Google Scholar 

  • A. Sjölander, Multi-phonon processes in slow neutrons catetring by crystals. Ark. Für Fys. 14, 315 (1958)

    MATH  Google Scholar 

  • P. Souvatzis, O. Eriksson, M.I. Katsnelson, S.P. Rudin, The self-consistent ab initio lattice dynamical method. Comput. Mater. Sci. 44, 888–894 (2009). http://www.sciencedirect.com/science/article/pii/S0927025608003121, doi:http://dx.doi.org/10.1016/j.commatsci.2008.06.016

  • H. Spalt, A. Zounek, B. Dev, G. Materlik, Coherent X-Ray scattering by phonons: determination of phonon eigenvectors. Phys. Rev. Lett. 60, 1868–1871 (1988). http://link.aps.org/doi/10.1103/PhysRevLett.60.1868

  • G.L. Squires, Introduction to the Theory of Thermal Neutron Scattering (Dover Publications, New York, 1978)

    Google Scholar 

  • R. Stedman, L. Almqvist, G. Nilsson, G. Raunio, Fermi Surace of Lead from Kohn Anomalies. Phys. Rev. 163, 567 (1967)

    Article  ADS  Google Scholar 

  • T. Tadano, Y. Gohda, T. Tsuneyuki, Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations. J. Phys. Condens. Matter. 26, 225402 (2014). http://stacks.iop.org/0953-8984/26/i=22/a=225402

  • A. Togo, F. Oba, I. Tanaka, First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-SiO2 at high pressures. Phys. Rev. B. 78, 134106 (2008). http://link.aps.org/doi/10.1103/PhysRevB.78.134106

  • L. van Hove, Correlations in space and time and born approximation scattering in systems of interacting particles. Phys. Rev. 95, 249–262 (1954)

    Article  MATH  ADS  Google Scholar 

  • D. Waasmaier, A. Kirfel, New analytical scattering factor functions for free atoms and ions. Acta Crystallogr. A51, 416 (1994)

    Google Scholar 

  • Z.P. Yin, A. Kutepov, G. Kotliar, Correlation-enhanced electron-phonon coupling: applications of GW and screened hybrid functional to bismuthates, chloronitrides, and other high-. Phys. Rev. X. 3, 21011 (2013). http://link.aps.org/doi/10.1103/PhysRevX.3.021011

Download references

Acknowledgements

I am grateful to several scientists who kindly read and offered comments on preliminary versions of this chapter including Sunil Sinha, Rolf Heid, Hiroshi Fukui, and Kazuyoshi Yamada. I would like to express my deep appreciation to the many scientists in all parts of SPring-8 that I have had the pleasure of working with over the last nearly two decades, as well as many collaborators outside SPring-8. This work is based on experience gained during many proposals including 2001B 0203 0481 0482 0508 0575 3607, 2002A 0182 0279 0280 0520 0537 0559 0560 0561 0562 0627, 2002B 0151 0178 0179 0180 0243 0248 0249 0287 0382 0383 0529 0539 0565 0593 0594 0632 0668 0709, 2003A 0022 0081 0153 0175 0235 0284 0357 0555 0637 0638 0683 0716, 2003B 0019 0132 0206 0248 0359 0397 0574 0693 0743 0744 0745 0755 0766, 2004A 0322 0439 0510 0519 0577 0582 0590 0634, 2004B 0003 0070 0204 0343 0491 0597 0632 0635 0722 0730 0736 0752, 2005A 0039 0061 0146 0147 0148 0157 0330 0369 0428 0475 0567 0596 0616 0712 0751, 2005B 0082 0093 0124 0253 0266 0295 0346 0441 0443 0484 0603 0623 0650 0731 0736, 2006A 1023 1039 1057 1081 1181 1226 1242 1272 1273 1291 1345 1376 1379 1417 1430 1453 1467 1502, 2006B 1053 1082 1089 1146 1186 1204 1235 1259 1299 1311 1337 1352 1356 1405 1417, 2007A 1109 1118 1125 1125 1222 1234 1279 1281 1301 1374 1436 1441 1473 1505 1507 1523 1539 1561 1612 1647 1671, 2007B 1053 1062 1099 1114 1118 1197 1198 1215 1322 1328 1336 1343 1375 1444 1538 1614 1640 1662, 2008A 1058 1064 1125 1140 1204 1205 1394 1456 1491 1522 1568 1582 1584 1587 1588 1626, 2008B 1381 1403 1473 1178 1108 1326 1584 1240 1144 1169 1491 1634, 2009A 1054 1093 1146 1189 1203 1224 1274 1290 1299 1358 1379 1436 1451 1492 1506 1548, 2009B 1074 1114 1126 1150 1165 1286 1323 1423 1439 1548 1555 1584 1609 1619, 2010B 1108 1112 1177 1185 1206 1353 1354 1392 1410 1453 1497 15271538 1575 1579 1593, 2011A 1051 1075 1104 1117 1136 1154 1180 1256 1271 1300 1304 1366 1373 1452 1502, 2011B 1122 1213 1215 1314 1332 1336 1353 1388 1406 1408 1423 1425 1536 1590, 2012A 1102 1115 1122 1156 1219 1237 1243 1250 1255 1354 1362 1390 1406 1417 1452 1506 1583, 2012B 1080 1125 1159 1196 1226 1236 1277 1283 1343 1356 1358 1364 1439 1577 1596 1658, 2014A 1026 1059 1076 1086 1089 1100 1106 1122 1131 1154 1207 1231 1235 1240 1346 1368 1378 1385 1434 1678 1687, 2014B 1052 1066 1068 1130 1143 1159 1182 1222 1269 1271 1290 1365 1381 1465 1381 1465 1536 1545 1739 1760 1761 1175 1192. 

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Baron, A.Q.R. (2015). High-Resolution Inelastic X-Ray Scattering II: Scattering Theory, Harmonic Phonons, and Calculations. In: Jaeschke, E., Khan, S., Schneider, J., Hastings, J. (eds) Synchrotron Light Sources and Free-Electron Lasers. Springer, Cham. https://doi.org/10.1007/978-3-319-04507-8_52-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04507-8_52-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-04507-8

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    High-Resolution Inelastic X-Ray Scattering Part II: Scattering Theory, Harmonic Phonons, and Calculations
    Published:
    27 December 2018

    DOI: https://doi.org/10.1007/978-3-319-04507-8_52-2

  2. Original

    High-Resolution Inelastic X-Ray Scattering II: Scattering Theory, Harmonic Phonons, and Calculations
    Published:
    20 August 2015

    DOI: https://doi.org/10.1007/978-3-319-04507-8_52-1