Skip to main content

Enhanced Secondary Metabolite Production in Hairy Root Cultures Through Biotic and Abiotic Elicitors

Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Natural products from plants are of major pharmaceutical and therapeutic importance, several of which are often obtained from the underground parts of the concerned plants, necessitating the uprooting and killing of the whole plants. The biosynthetic capacity of “hairy roots” has appeared to closely mirror that of the roots of the parent plant from which they are derived and therefore has extensively been studied as an effective alternate system for in vitro secondary metabolite production. The growth rates and secondary metabolite yields of such transformed roots have also been improved by adopting several measures, such as: by alterations in nutrient composition, carbohydrate source and their levels, pH changes, supplementation with growth hormones, or elicitation with biotic or abiotic elicitors. Elicitors act by working as signals which are received by some elicitor-specific receptors present on the plant membranes, thus activating the defense responses which in turn lead to targeted secondary metabolite production. The present chapter discusses the effectiveness of different sources of elicitors (biotic or abiotic), their concentrations, and the time of application during hairy roots growth. The succeeding discussion in the chapter relates the present findings related to the genetically transformed “hairy root” cultures to the existing status of work on elicitation in medicinally important plant species for the maximum biomass and secondary metabolite production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ag+:

Silver

AgNO3:

Silver nitrate

AlCl3:

Aluminum chloride

ASA:

Acetylsalicylic acid

Ca:

Calcium

CaCl2:

Calcium chloride

CdCl2:

Cadmium chloride

Co:

Cobalt

CoCl2:

Cobalt chloride

Cor:

Coronatine

Cu:

Copper

CuCl2:

Copper chloride

CuSO4:

Copper sulfate

Fe:

Iron

H2O2:

Hydrogen peroxide

HgCl2:

Mercuric chloride

KCl:

Potassium chloride

Mg:

Magnesium

MeJA:

Methyl jasmonate

Mn:

Manganese

NaCl:

Sodium chloride

NO:

Nitric oxide

PEG:

Polyethylene glycol

SA:

Salicylic acid

SNP:

Sodium nitroprusside Terpenoid indole alkaloid (TIA)

UV:

Ultraviolet

VdSO4:

Vanedium sulfate

Zn:

Zinc

References

  1. Böttger A et al (2018) Plant secondary metabolites and their general function in plants. In: Lessons on caffeine, cannabis & co: plant-derived drugs and their interaction with human receptors. Springer International Publishing, Cham, pp 3–17

    Google Scholar 

  2. Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52(1):39

    PubMed  PubMed Central  Google Scholar 

  3. Li D et al (2016) Illuminating a plant’s tissue-specific metabolic diversity using computational metabolomics and information theory. Proc Natl Acad Sci USA 113(47):E7610–E7618

    CAS  PubMed  Google Scholar 

  4. Hussain MS et al (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10–20

    PubMed  PubMed Central  Google Scholar 

  5. Chandran H et al (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep 26:e00450

    Google Scholar 

  6. Pistelli L et al (2010) Hairy root cultures for secondary metabolites production. Adv Exp Med Biol 698:167–184

    CAS  PubMed  Google Scholar 

  7. Verma PC et al (2002) In vitro-studies in Plumbago zeylanica: rapid micropropagation and establishment of higher plumbagin yielding hairy root cultures. J Plant Physiol 159(5):547–552

    CAS  Google Scholar 

  8. Verma PC et al (2015) Yield enhancement strategies for the production of picroliv from hairy root culture of Picrorhiza kurroa Royle ex Benth. Plant Signal Behav 10(5):e1023976

    PubMed  PubMed Central  Google Scholar 

  9. Verma PC et al (2009) Efficient production of gossypol from hairy root cultures of cotton (Gossypium hirsutum L.). Curr Pharm Biotechnol 10(7):691–700

    CAS  PubMed  Google Scholar 

  10. Srivastava R, Rai KM, Srivastava R (2018) Plant biosynthetic engineering through transcription regulation: an insight into molecular mechanisms during environmental stress. In: Biosynthetic technology and environmental challenges. Springer Nature, Singapore, pp 51–72. https://doi.org/10.1007/978-981-10-7434-9. ISBN: 9789811074332 • 9789811074349 (online)

    Chapter  Google Scholar 

  11. Verma PC et al (2007) Agrobacterium rhizogenes-mediated transformation of Picrorhiza kurroa Royle ex Benth.: establishment and selection of superior hairy root clone. Plant Biotechnol Rep 1(3):169–174

    Google Scholar 

  12. Singh H et al (2014) Evaluation of total phenolic compounds and insecticidal and antioxidant activities of tomato hairy root extract. J Agric Food Chem 62(12):2588–2594

    CAS  PubMed  Google Scholar 

  13. Stewart FC, Hall FH, Rolfs FM (1900) A fruit-disease survey of western New York in 1900. Bulletin/New York Agricultural Experiment Station no 191. New York Agricultural Experiment Station, Geneva, pp 293–331, [4] p. of plates

    Google Scholar 

  14. Ackermann C (1977) Pflanzen aus Agrobacterium rhizogenes-tumoren an Nicotiana tabacum. Plant Sci Lett 8(1):23–30

    Google Scholar 

  15. Veena V, Taylor CG (2007) Agrobacterium rhizogenes: recent developments and promising applications. In Vitro Cell Dev Biol Plant 43(5):383–403

    CAS  Google Scholar 

  16. Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Sci 180(3):439–446

    CAS  PubMed  Google Scholar 

  17. Shen WH et al (1988) Hairy roots are more sensitive to auxin than normal roots. Proc Natl Acad Sci USA 85(10):3417–3421

    CAS  PubMed  Google Scholar 

  18. Guillon S et al (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346

    CAS  PubMed  Google Scholar 

  19. Talano MA et al (2012) Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol 6(2):115–133

    CAS  PubMed  Google Scholar 

  20. Li C, Wang M (2020) Application of hairy root culture for bioactive compounds production in medicinal plants. Curr Pharm Biotechnol 21. https://doi.org/10.2174/1389201021666200516155146

  21. Guivarc’h A et al (1999) Instability of phenotype and gene expression in long-term culture of carrot hairy root clones. Plant Cell Rep 19(1):43–50

    PubMed  Google Scholar 

  22. Muji Ermayanti T, McComb JA, O’Brien PA (1994) Stimulation of synthesis and release of swainosonine from transformed roots of Swainsona galegifolia. Phytochemistry 36(2):313–317

    Google Scholar 

  23. Häkkinen ST et al (2016) Exploring the metabolic stability of engineered hairy roots after 16 years maintenance. Front Plant Sci 7:1486

    PubMed  PubMed Central  Google Scholar 

  24. Hidalgo D et al (2018) Biotechnological production of pharmaceuticals and biopharmaceuticals in plant cell and organ cultures. Curr Med Chem 25(30):3577–3596

    CAS  PubMed  Google Scholar 

  25. Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27(1):29–43

    CAS  PubMed  Google Scholar 

  26. Gutierrez-Valdes N et al (2020) Hairy root cultures-a versatile tool with multiple applications. Front Plant Sci 11:33

    PubMed  PubMed Central  Google Scholar 

  27. Halder M, Sarkar S, Jha S (2019) Elicitation: a biotechnological tool for enhanced production of secondary metabolites in hairy root cultures. Eng Life Sci 19(12):880–895

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramirez-Estrada K et al (2016) Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 21(2):182

    PubMed  PubMed Central  Google Scholar 

  29. Namdeo A (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1(1):69–79

    CAS  Google Scholar 

  30. Srivastava M, Sharma S, Misra P (2016) Elicitation based enhancement of secondary metabolites in Rauwolfia serpentina and Solanum khasianum hairy root cultures. Pharmacogn Mag 12(Suppl 3):S315–S320

    PubMed  PubMed Central  Google Scholar 

  31. Zhai X et al (2017) The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 43(2):238–261

    CAS  PubMed  Google Scholar 

  32. Thakur M et al (2019) Improving production of plant secondary metabolites through biotic and abiotic elicitation. J Appl Res Med Aromat Plants 12:1–12

    Google Scholar 

  33. Brodelius P, Pedersen H (1993) Increasing secondary metabolite production in plant-cell culture by redirecting transport. Trends Biotechnol 11(1):30–36

    CAS  PubMed  Google Scholar 

  34. Pitta-Alvarez SI, Spollansky TC, Giulietti AM (2000) The influence of different biotic and abiotic elicitors on the production and profile of tropane alkaloids in hairy root cultures of Brugmansia candida. Enzyme Microb Technol 26(2–4):252–258

    CAS  PubMed  Google Scholar 

  35. Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Adv Biochem Eng Biotechnol 134:55–89

    CAS  PubMed  Google Scholar 

  36. Buitelaar RM, Cesario MT, Tramper J (1992) Elicitation of thiophene production by hairy roots of Tagetes patula. Enzyme Microb Technol 14(1):2–7

    CAS  Google Scholar 

  37. Poulev A et al (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 46(12):2542–2547

    CAS  PubMed  Google Scholar 

  38. Naik PM (2016) Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In: Abiotic and biotic stress in plants-recent advances and future perspectives. In Tech, Rijeka, pp 247–277

    Google Scholar 

  39. Eilert U (1987) Elicitation: methodology and aspects of application. In: Constabel F, Vasil I (eds) Cell culture and somatic cell genetics of plants, vol. 4. Academic Press, San Diego, pp. 153–96.

    Google Scholar 

  40. Ferrari S (2010) Biological elicitors of plant secondary metabolites: mode of action and use in the production of nutraceutics. Adv Exp Med Biol 698:152–166

    CAS  PubMed  Google Scholar 

  41. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6(11):1720–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Mishra AK, Sharma K, Misra RS (2012) Elicitor recognition, signal transduction and induced resistance in plants. J Plant Interact 7(2):95–120

    Google Scholar 

  43. Liu CZ et al (2002) Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua L. Process Biochem 38(4):581–585

    CAS  Google Scholar 

  44. Yu K-W et al (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23(1):53–56

    CAS  Google Scholar 

  45. Gai, Qing-Yan, Jiao Jiao, Meng Luo, Wei Wang, Chun-Jian Zhao, Yu-Jie Fu, and Wei Ma. (2016) UV elicitation for promoting astragaloside production in Astragalus membranaceus hairy root cultures with transcriptional expression of biosynthetic genes Industrial Crops and Products, 84 : 350-357

    Google Scholar 

  46. Huang X et al (2016) Efficient rutin and quercetin biosynthesis through flavonoids-related gene expression in Fagopyrum tataricum Gaertn. hairy root cultures with UV-B irradiation. Front Plant Sci 7:63

    PubMed  PubMed Central  Google Scholar 

  47. Qin BF et al (2014) Effects of acetylsalicylic acid and UV-B on gene expression and tropane alkaloid biosynthesis in hairy root cultures of Anisodus luridus. Plant Cell Tissue Organ Cult 117(3):483–490

    CAS  Google Scholar 

  48. Jeong GT, Park DH (2006) Enhanced secondary metabolite biosynthesis by elicitation in transformed plant root system: effect of abiotic elicitors. Appl Biochem Biotechnol 129–132:436–446

    PubMed  Google Scholar 

  49. Thakore D, Srivastava A, Sinha A (2012) Enhanced production of antihypertensive drug ajmalicine in transformed hairy root culture of Catharanthus roseus by application of stress factors in statistically optimized medium. In: Chemistry of phytopotentials: health, energy and environmental perspectives. Springer, Berlin, pp 39–42

    Google Scholar 

  50. Shi M, Kwok KW, Wu JY (2007) Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnol Appl Biochem 46(Pt 4):191–196

    CAS  PubMed  Google Scholar 

  51. Praveen N, Murthy HN (2012) Synthesis of withanolide A depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crop Prod 35(1):241–243

    CAS  Google Scholar 

  52. Mukundan U, Hjortso MA (1991) Growth and thiophene accumulation by hairy root cultures of Tagetes patula in media of varying initial pH. Plant Cell Rep 9(11):627–630

    CAS  PubMed  Google Scholar 

  53. Sivakumar G et al (2005) Optimization of organic nutrients for ginseng hairy roots production in large-scale bioreactors. Curr Sci 89(4):641–649

    CAS  Google Scholar 

  54. Mukundan U et al (1998) pH-mediated release of betalains from transformed root cultures of Beta vulgaris L. Appl Microbiol Biotechnol 50(2):241–245

    CAS  Google Scholar 

  55. Sáenz-Carbonell LA et al (1993) Effect of the medium pH on the release of secondary metabolites from roots of Datura stramonium, Catharanthus roseus, and Tagetes patula cultured in vitro. Appl Biochem Biotechnol 38(3):257

    Google Scholar 

  56. Yang L et al (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:4

    Google Scholar 

  57. Li M et al (2018) GmNAC15 overexpression in hairy roots enhances salt tolerance in soybean. J Integr Agric 17(3):530–538

    CAS  Google Scholar 

  58. Toivonen L, Laakso S, Rosenqvist H (1992) The effect of temperature on hairy root cultures of Catharanthus roseus: growth, indole alkaloid accumulation and membrane lipid composition. Plant Cell Rep 11(8):395–399

    CAS  PubMed  Google Scholar 

  59. Thimmaraju R et al (2003) Kinetics of pigment release from hairy root cultures of Beta vulgaris under the influence of pH, sonication, temperature and oxygen stress. Process Biochem 38(7):1069–1076

    CAS  Google Scholar 

  60. Wu J, Zhong J-J (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 68(2):89–99

    CAS  PubMed  Google Scholar 

  61. Wang P et al (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712

    CAS  PubMed  Google Scholar 

  62. Ruttkay-Nedecky B et al (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15(1):33

    Google Scholar 

  63. Kim DH, Gopal J, Sivanesan I (2017) Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Adv 7(58):36492–36505

    CAS  Google Scholar 

  64. Marslin G, Sheeba CJ, Franklin G (2017) Nanoparticles alter secondary metabolism in plants via ROS burst. Front Plant Sci 8:832

    PubMed  PubMed Central  Google Scholar 

  65. Shakeran Z et al (2015) Improvement of atropine production by different biotic and abiotic elicitors in hairy root cultures of Datura metel. Turk J Biol 39(1):111–118

    CAS  Google Scholar 

  66. Zhang B et al (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr Nanosci 9(3):363–370

    CAS  Google Scholar 

  67. Chung IM, Rajakumar G, Thiruvengadam M (2018) Effect of silver nanoparticles on phenolic compounds production and biological activities in hairy root cultures of Cucumis anguria. Acta Biol Hung 69(1):97–109

    CAS  PubMed  Google Scholar 

  68. Moharrami F et al (2017) Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. In Vitro Cell Dev Biol Plant 53(2):104–111

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nourozi E et al (2019) Iron oxide nanoparticles: a novel elicitor to enhance anticancer flavonoid production and gene expression in Dracocephalum kotschyi hairy-root cultures. J Sci Food Agric 99(14):6418–6430

    CAS  PubMed  Google Scholar 

  70. Moharrami F, Hosseini B, Sharafi A, Farjaminezhad M (2017) Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. In Vitro Cell Dev Biol Plant 53:104–111

    Google Scholar 

  71. Asl KR et al (2019) Influence of nano-zinc oxide on tropane alkaloid production, h6h gene transcription and antioxidant enzyme activity in Hyoscyamus reticulatus L. hairy roots. Eng Life Sci 19(1):73–89

    CAS  PubMed  Google Scholar 

  72. Shams Ul Hassan S et al (2019) Stress-driven discovery in the natural products: a gateway towards new drugs. Biomed Pharmacother 109:459–467

    CAS  PubMed  Google Scholar 

  73. Robbins MP, Hartnoll J, Morris P (1991) Phenylpropanoid defence responses in transgenic Lotus corniculatus 1. Glutathione elicitation of isoflavan phytoalexins in transformed root cultures. Plant Cell Rep 10(2):59–62

    CAS  PubMed  Google Scholar 

  74. Whitehead IM, Threlfall DR (1992) Production of phytoalexins by plant tissue cultures. J Biotechnol 26(1):63–81

    CAS  Google Scholar 

  75. Chen H, Chen F (2000) Induction of phytoalexin formation in crown gall and hairy root culture of Salvia miltiorrhiza by methyl viologen. Biotechnol Lett 22(8):715–720

    CAS  Google Scholar 

  76. Peraza-Luna F et al (2001) Sotolone production by hairy root cultures of Trigonella foenum-graecum in airlift with mesh bioreactors. J Agric Food Chem 49(12):6012–6019

    CAS  PubMed  Google Scholar 

  77. Savitha BC et al (2006) Different biotic and abiotic elicitors influence betalain production in hairy root cultures of Beta vulgaris in shake-flask and bioreactor. Process Biochem 41(1):50–60

    CAS  Google Scholar 

  78. Rudrappa T et al (2006) Elicitation of peroxidase activity in genetically transformed root cultures of Beta vulgaris L. Electron J Biotechnol 9(5, 511–521, 97):e160393

    Google Scholar 

  79. Zaker A et al (2015) Effects of some elicitors on tanshinone production in adventitious root cultures of Perovskia abrotanoides Karel. Ind Crop Prod 67:97–102

    CAS  Google Scholar 

  80. Harfi B et al (2016) Hyoscyamine production in hairy roots of three Datura species exposed to high-salt medium. In Vitro Cell Dev Biol Plant 52(1):92–98

    CAS  Google Scholar 

  81. Kai GY et al (2012) Effects of different elicitors on yield of tropane alkaloids in hairy roots of Anisodus acutangulus. Mol Biol Rep 39(2):1721–1729

    CAS  PubMed  Google Scholar 

  82. Condori J et al (2010) Induced biosynthesis of resveratrol and the prenylated stilbenoids arachidin-1 and arachidin-3 in hairy root cultures of peanut: effects of culture medium and growth stage. Plant Physiol Biochem 48(5):310–318

    CAS  PubMed  Google Scholar 

  83. Xiao Y et al (2010) Lithospermic acid B is more responsive to silver ions (Ag+) than rosmarinic acid in Salvia miltiorrhiza hairy root cultures. Biosci Rep 30(1):33–40

    CAS  Google Scholar 

  84. Spollansky TC, Pitta-Alvarez SI, Giulietti AM (2000) Effect of JA and aluminium on production of tropane alkaloids in hairy root cultures of Brugmansia candida. Electron J Biotechnol 3:31

    Google Scholar 

  85. Sung L-S, Huang S-Y (2000) Headspace ethylene accumulation on Stizolobium hassjoo hairy root culture producing l-3,4-dihydroxyphenylalanine. Biotechnol Lett 22(10):875–878

    CAS  Google Scholar 

  86. Furze JM et al (1991) Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep 10(3):111–114

    CAS  PubMed  Google Scholar 

  87. Srivastava S, Srivastava AK (2014) Effect of elicitors and precursors on azadirachtin production in hairy root culture of Azadirachta indica. Appl Biochem Biotechnol 172(4):2286–2297

    CAS  PubMed  Google Scholar 

  88. Gordy JW et al (2015) Comparative effectiveness of potential elicitors of plant resistance against Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) in four crop plants. PLoS One 10(9):e0136689

    PubMed  PubMed Central  Google Scholar 

  89. Bedini A et al (2018) Unraveling the initial plant hormone signaling, metabolic mechanisms and plant defense triggering the endomycorrhizal symbiosis behavior. Front Plant Sci 9:1800

    PubMed  PubMed Central  Google Scholar 

  90. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23(4):283–333

    CAS  PubMed  Google Scholar 

  91. Siddiqi KS, Husen A (2019) Plant response to jasmonates: current developments and their role in changing environment. Bull Natl Res Cent 43(1):153

    Google Scholar 

  92. Sevón N, Hiltunen R, Oksman-Caldentey K (1992) Chitosan increases hyoscyamine content in hairy root cultures of Hyoscyamus muticus. Pharm Pharmacol Lett 2:96–99

    Google Scholar 

  93. Biondi S et al (2000) Jasmonates induce over-accumulation of methylputrescine and conjugated polyamines in Hyoscyamus muticus L. root cultures. Plant Cell Rep 19(7):691–697

    CAS  PubMed  Google Scholar 

  94. Signs M, Flores H (1989) Elicitation of sesquiterpene phytoalexin biosynthesis in transformed root cultures of Hyoscyamus muticus. Plant Physiol 89:135

    Google Scholar 

  95. Carvalho EB, Curtis WR (2002) Effect of elicitation on growth, respiration, and nutrient uptake of root and cell suspension cultures of Hyoscyamus muticus. Biotechnol Prog 18(2):282–289

    CAS  PubMed  Google Scholar 

  96. Flores HE, Curtis WR (1992) Approaches to understanding and manipulating the biosynthetic potential of plant roots. Ann N Y Acad Sci 665:188–209

    CAS  PubMed  Google Scholar 

  97. Chung I-M et al (2016) Elicitation enhanced the production of phenolic compounds and biological activities in hairy root cultures of bitter melon (Momordica charantia L.). Braz Arch Biol Technol 59

    Google Scholar 

  98. Rijhwani SK, Shanks JV (1998) Effect of elicitor dosage and exposure time on biosynthesis of indole alkaloids by Catharanthus roseus hairy root cultures. Biotechnol Prog 14(3):442–449

    CAS  PubMed  Google Scholar 

  99. Shanks JV et al (1998) Quantification of metabolites in the indole alkaloid pathways of Catharanthus roseus: implications for metabolic engineering. Biotechnol Bioeng 58(2–3):333–338

    CAS  PubMed  Google Scholar 

  100. Vázquez-Flota F et al (1994) Catharanthine and ajmalicine synthesis in Catharanthus roseus hairy root cultures. Plant Cell Tissue Organ Cult 38(2):273–279

    Google Scholar 

  101. Gundlach H et al (1992) JA is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89(6):2389–2393

    CAS  PubMed  Google Scholar 

  102. Yu K-W et al (2000) Improvement of ginsenoside production by JA and some other elicitors in hairy root culture of ginseng (Panax ginseng C. A. Meyer). In Vitro Cell Dev Biol Plant 36(5):424–428

    CAS  Google Scholar 

  103. Kittipongpatana N, Davis DL, Porter JR (2002) Methyl jasmonate increases the production of valepotriates by transformed root cultures of Valerianella locusta. Plant Cell Tissue Organ Cult 71(1):65–75

    CAS  Google Scholar 

  104. Furmanowa M, SylBowska-Baranek K (2000) Hairy root cultures of Taxus × media var. Hicksii Rehd. as a new source of paclitaxel and 10-deacetylbaccatin III. Biotechnol Lett 22:683–686

    CAS  Google Scholar 

  105. Tisserant LP et al (2016) Enhanced stilbene production and excretion in Vitis vinifera cv Pinot Noir hairy root cultures. Molecules 21(12):1703

    Google Scholar 

  106. Pandey V et al (2016) Expression of Withania somnifera steroidal glucosyltransferase gene enhances withanolide content in hairy roots. Plant Mol Biol Report 34(3):681–689

    CAS  Google Scholar 

  107. Sivanandhan G et al (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera (L.) Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell Tissue Organ Cult 114(1):121–129

    CAS  Google Scholar 

  108. Cheruvathur MK, Thomas TD (2014) Effect of plant growth regulators and elicitors on rhinacanthin accumulation in hairy root cultures of Rhinacanthus nasutus (L.) Kurz. Plant Cell Tissue Organ Cult 118(1):169–177

    CAS  Google Scholar 

  109. Zhu C et al (2014) Establishment of Tripterygium wilfordii Hook. f. hairy root culture and optimization of its culture conditions for the production of triptolide and wilforine. J Microbiol Biotechnol 24(6):823–834

    CAS  PubMed  Google Scholar 

  110. Hashemi SM, Naghavi MR (2016) Production and gene expression of morphinan alkaloids in hairy root culture of Papaver orientale L. using abiotic elicitors. Plant Cell Tissue Organ Cult 125(1):31–41

    CAS  Google Scholar 

  111. Goklany S et al (2013) Jasmonate-dependent alkaloid biosynthesis in Catharanthus roseus hairy root cultures is correlated with the relative expression of Orca and Zct transcription factors. Biotechnol Prog 29(6):1367–1376

    CAS  PubMed  Google Scholar 

  112. Piatczak E, Kuzma L, Wysokinska H (2016) The influence of methyl jasmonate and salicylic acid on secondary metabolite production in Rehmannia glutinosa Libosch hairy root culture. Acta Biol Cracov Ser Bot 58(1):57–65

    CAS  Google Scholar 

  113. Ru M et al (2016) Prunella vulgaris L. hairy roots: culture, growth, and elicitation by ethephon and salicylic acid. Eng Life Sci 16(5):494–502

    CAS  Google Scholar 

  114. Perassolo M et al (2017) Enhancement of anthraquinone production and release by combination of culture medium selection and methyl jasmonate elicitation in hairy root cultures of Rubia tinctorum. Ind Crop Prod 105:124–132

    CAS  Google Scholar 

  115. Wang CH et al (2016) Synergistic effects of ultraviolet-B and methyl jasmonate on tanshinone biosynthesis in Salvia miltiorrhiza hairy roots. J Photochem Photobiol B Biol 159:93–100

    CAS  Google Scholar 

  116. Liang ZS et al (2013) Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. PLoS One 8(9):e72806

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhou J et al (2019) Postharvest UV-B irradiation stimulated ginsenoside Rg(1) biosynthesis through nitric oxide (NO) and JA (JA) in Panax quinquefolius roots. Molecules 24(8):1462

    Google Scholar 

  118. Hosseini SM et al (2017) Hairy root culture optimization and resveratrol production from Vitis vinifera subsp. sylvesteris. World J Microbiol Biotechnol 33(4):67

    Google Scholar 

  119. Patra N, Srivastava AK (2014) Mass scale artemisinin production in a stirred tank bioreactor using hairy roots of Artemisia annua. Int J Biosci Biochem Bioinform 4(6):467–474

    CAS  Google Scholar 

  120. Putalun W et al (2011) Enhanced glycyrrhizin production in Glycyrrhiza inflata hairy roots cultures using elicitation. Planta Med 77(12):1279–1279

    Google Scholar 

  121. Sajjalaguddam RR, Paladugu A (2016) Influence of Agrobacterium rhizogenes strains and elicitation on hairy root induction and glycyrrhizin production from Abrus precatorius. J Pharm Sci Res 8(12):1353–1357

    CAS  Google Scholar 

  122. Moghadam YA et al (2014) Dopamine production in hairy root cultures of Portulaca oleracea (Purslane) using Agrobacterium rhizogenes. J Agric Sci Technol 16(2):409–420

    Google Scholar 

  123. Theboral J et al (2014) Enhanced production of isoflavones by elicitation in hairy root cultures of soybean. Plant Cell Tissue Organ Cult 117(3):477–481

    CAS  Google Scholar 

  124. Zaheer M, Reddy VD, Giri CC (2016) Enhanced daidzin production from jasmonic and acetyl salicylic acid elicited hairy root cultures of Psoralea corylifolia L. (Fabaceae). Nat Prod Res 30(13):1542–1547

    CAS  PubMed  Google Scholar 

  125. Vazquez-Flota F et al (2009) A differential response to chemical elicitors in Catharanthus roseus in vitro cultures. Biotechnol Lett 31(4):591–595

    CAS  PubMed  Google Scholar 

  126. Vaccaro MC et al (2017) Increasing the synthesis of bioactive abietane diterpenes in Salvia sclarea hairy roots by elicited transcriptional reprogramming. Plant Cell Rep 36(2):375–386

    CAS  PubMed  Google Scholar 

  127. Gadzovska S et al (2013) The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell Tissue Organ Cult 113(1):25–39

    CAS  Google Scholar 

  128. Hao XL et al (2015) Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnol Appl Biochem 62(1):24–31

    CAS  PubMed  Google Scholar 

  129. Shinde AN, Malpathak N, Fulzele DP (2009) Enhanced production of phytoestrogenic isoflavones from hairy root cultures of Psoralea corylifolia L. using elicitation and precursor feeding. Biotechnol Bioprocess Eng 14(3):288

    CAS  Google Scholar 

  130. Krstic-Milosevic D et al (2017) Effect of elicitors on xanthone accumulation and biomass production in hairy root cultures of Gentiana dinarica. Plant Cell Tissue Organ Cult 130(3):631–640

    CAS  Google Scholar 

  131. Nourozi E, Hosseini B, Hassani A (2014) A reliable and efficient protocol for induction of hairy roots in Agastache foeniculum. Biologia 69(7):870–879

    CAS  Google Scholar 

  132. Satdive RK, Fulzele DP, Eapen S (2007) Enhanced production of azadirachtin by hairy root cultures of Azadirachta indica A. Juss by elicitation and media optimization. J Biotechnol 128(2):281–289

    CAS  PubMed  Google Scholar 

  133. Jeong GT et al (2005) Production of antioxidant compounds by culture of Panax ginseng C.A. Meyer hairy roots: I. Enhanced production of secondary metabolite in hairy root cultures by elicitation. Appl Biochem Biotechnol 121–124:1147–1157

    PubMed  Google Scholar 

  134. Shabani L et al (2009) Glycyrrhizin production by in vitro cultured Glycyrrhiza glabra elicited by methyl jasmonate and salicylic acid. Russ J Plant Physiol 56(5):621–626

    CAS  Google Scholar 

  135. Malarz J, Stojakowska A, Kisiel W (2007) Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiol Plant 29(2):127–132

    CAS  Google Scholar 

  136. Rothe G, Garske U, Dräger B (2001) Calystegines in root cultures of Atropa belladonna respond to sucrose, not to elicitation. Plant Sci 160(5):1043–1053

    CAS  PubMed  Google Scholar 

  137. Dixit G et al (2020) Distinct defensive activity of phenolics and phenylpropanoid pathway genes in different cotton varieties towards chewing pests. Plant Signal Behav 15(5):e1747689-10

    Google Scholar 

  138. Baenas N, García-Viguera C, Moreno DA (2014) Elicitation: a tool for enriching the bioactive composition of foods. Molecules 19(9):13541–13563

    PubMed  PubMed Central  Google Scholar 

  139. Vazquez-Flota F et al (2004) Alkaloid metabolism in wounded Catharanthus roseus seedlings. Plant Physiol Biochem 42(7–8):623–628

    CAS  PubMed  Google Scholar 

  140. Jung HY et al (2003) Enhanced production of scopolamine by bacterial elicitors in adventitious hairy root cultures of Scopolia parviflora. Enzyme Microb Technol 33(7):987–990

    CAS  Google Scholar 

  141. Zhao J-L, Zhou L-G, Wu J-Y (2010) Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide–protein fractions of plant growth-promoting rhizobacterium Bacillus cereus. Process Biochem 45(9):1517–1522

    CAS  Google Scholar 

  142. Saxena P et al (2017) Gene expression analysis of the withanolide biosynthetic pathway in hairy root cultures of Withania somnifera elicited with methyl jasmonate and the fungus Piriformospora indica. Symbiosis 71(2):143–154

    CAS  Google Scholar 

  143. Wilczańska-Barska A et al (2012) Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation. Biotechnol Lett 34(9):1757–1763

    PubMed  Google Scholar 

  144. Ahlawat S et al (2014) Modulation of artemisinin biosynthesis by elicitors, inhibitor, and precursor in hairy root cultures of Artemisia annua L. J Plant Interact 9(1):811–824

    Google Scholar 

  145. Wang JW et al (2009) Stimulation of artemisinin synthesis by combined cerebroside and nitric oxide elicitation in Artemisia annua hairy roots. Appl Microbiol Biotechnol 85(2):285–292

    CAS  PubMed  Google Scholar 

  146. Tashackori H et al (2018) Piriformospora indica cell wall modulates gene expression and metabolite profile in Linum album hairy roots. Planta 248(5):1289–1306

    CAS  PubMed  Google Scholar 

  147. Sauerwein M, Yamazaki T, Shimomura K (1991) Hernandulcin in hairy root cultures of Lippia dulcis. Plant Cell Rep 9(10):579–581

    CAS  PubMed  Google Scholar 

  148. Merkli A, Christen P, Kapetanidis I (1997) Production of diosgenin by hairy root cultures of Trigonella foenum-graecum L. Plant Cell Rep 16(9):632–636

    CAS  PubMed  Google Scholar 

  149. Lee K-T et al (1998) Effects of chemicals on alkaloid production by transformed roots of belladonna. Phytochemistry 49(8):2343–2347

    CAS  Google Scholar 

  150. Bourgaud F, Bouque V, Guckert A (1999) Production of flavonoids by Psoralea hairy root cultures. Plant Cell Tissue Organ Cult 56(2):96

    Google Scholar 

  151. Keil M et al (2000) Production of amarogentin in root cultures of Swertia chirata. Planta Med 66(5):452–457

    CAS  PubMed  Google Scholar 

  152. Young-Am C et al (2000) Indigo production in hairy root cultures of Polygonum tinctorium Lour. Biotechnol Lett 22(19):1527–1530

    CAS  Google Scholar 

  153. Dunlop DS, Curtis WR (1991) Synergistic response of plant hairy-root cultures to phosphate limitation and fungal elicitation. Biotechnol Prog 7(5):434–438

    CAS  Google Scholar 

  154. Pannuri S et al (1993) Interpreting the role of phosphorus and growth rate in enhanced fungal induction of sesquiterpenes from Hyoscyamus muticus root cultures. Appl Microbiol Biotechnol 38(4):550–555

    CAS  Google Scholar 

  155. Mukundan U, Hjortso MA (1990) Effect of fungal elicitor on thiophene production in hairy root cultures of Tagetes patula. Appl Microbiol Biotechnol 33(2):145–147

    CAS  Google Scholar 

  156. Ming Q et al (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64(18):5687–5694

    CAS  PubMed  Google Scholar 

  157. Wang JW, Zhang Z, Tan RX (2001) Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. Biotechnol Lett 23(11):857–860

    CAS  Google Scholar 

  158. Flocco CG, Alvarez MA, Giulietti AM (1998) Peroxidase production in vitro by Armoracia lapathifolia (horseradish)-transformed root cultures: effect of elicitation on level and profile of isoenzymes. Biotechnol Appl Biochem 28(1):33–38

    CAS  PubMed  Google Scholar 

  159. Sim SJ, Kim DJ, Chang HN (1994) Shikonin production by extractive cultivation in transformed-suspension and hairy root cultures of Lithospermum erythrorhizon. Ann N Y Acad Sci 745:442–454

    CAS  PubMed  Google Scholar 

  160. Zabetakis I, Edwards R, O’Hagan D (1999) Elicitation of tropane alkaloid biosynthesis in transformed root cultures of Datura stramonium. Phytochemistry 50(1):53–56

    CAS  Google Scholar 

  161. Wibberley MS, Lenton JR, Neill SJ (1994) Sesquiterpenoid phytoalexins produced by hairy roots of Nicotiana tabacum. Phytochemistry 37(2):349–351

    CAS  Google Scholar 

  162. Udomsuk L et al (2011) Improved isoflavonoid production in Pueraria candollei hairy root cultures using elicitation. Biotechnol Lett 33(2):369–374

    CAS  PubMed  Google Scholar 

  163. Kochan E et al (2018) Methyl jasmonate as a control factor of the synthase squalene gene promoter and ginsenoside production in American ginseng hairy root cultured in shake flasks and a nutrient sprinkle bioreactor. Ind Crop Prod 115:182–193

    CAS  Google Scholar 

  164. Wilczanska-Barska A et al (2012) Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation. Biotechnol Lett 34(9):1757–1763

    CAS  PubMed  Google Scholar 

  165. Zhao JL et al (2014) Efficient production of flavonoids in Fagopyrum tataricum hairy root cultures with yeast polysaccharide elicitation and medium renewal process. Pharmacogn Mag 10(39):234–240

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sun J et al (2012) Improved cardenolide production in Calotropis gigantea hairy roots using mechanical wounding and elicitation. Biotechnol Lett 34(3):563–569

    CAS  PubMed  Google Scholar 

  167. Jiao J et al (2018) Chitosan elicitation of Isatis tinctoria L. hairy root cultures for enhancing flavonoid productivity and gene expression and related antioxidant activity. Ind Crop Prod 124:28–35

    CAS  Google Scholar 

  168. Jain A, Singh S (2015) Effect of growth regulators and elicitors for the enhanced production of Solasodine in hairy root culture of Solanum melongena (L.). J Indian Bot Soc 94:23–39

    Google Scholar 

  169. Kayani WK et al (2017) Effect of pRi T-DNA genes and elicitation on morphology and phytoecdysteroid biosynthesis in Ajuga bracteosa hairy roots. RSC Adv 7(76):47945–47953

    CAS  Google Scholar 

  170. Bhagwath SG, Hjortso MA (2000) Statistical analysis of elicitation strategies for thiarubrine A production in hairy root cultures of Ambrosia artemisiifolia. J Biotechnol 80(2):159–167

    CAS  PubMed  Google Scholar 

  171. Staniszewska I et al (2003) Elicitation of secondary metabolites in in vitro cultures of Ammi majus L. Enzyme Microb Technol 33(5):565–568

    CAS  Google Scholar 

  172. Gai QY et al (2017) Deacetylation biocatalysis and elicitation by immobilized Penicillium canescens in Astragalus membranaceus hairy root cultures: towards the enhanced and sustainable production of astragaloside IV. Plant Biotechnol J 15(3):297–305

    CAS  PubMed  Google Scholar 

  173. Thakore D, Srivastava A, Sinha A (2013) Yield enhancement strategies for enhancement of indole alkaloids in hairy root cultures of Catharanthus roseus. Int J Chem Eng Appl 4(3):153

    CAS  Google Scholar 

  174. Thakore D, Srivastava AK, Sinha AK (2015) Model based fed batch cultivation and elicitation for the overproduction of ajmalicine from hairy roots of Catharanthus roseus. Biochem Eng J 97:73–80

    CAS  Google Scholar 

  175. Arora J et al (2009) High stilbenes accumulation in root cultures of Cayratia trifolia (L.) Domin grown in shake flasks. Acta Physiol Plant 31(6):1307

    Google Scholar 

  176. Bais HP, Govindaswamy S, Ravishankar GA (2000) Enhancement of growth and coumarin production in hairy root cultures of witloof chicory (Cichorium intybus L.cv.Lucknow local) under the influence of fungal elicitors. J Biosci Bioeng 90(6):648–653

    CAS  PubMed  Google Scholar 

  177. Baek S et al (2019) Enhanced biosynthesis of triterpenoids in Centella asiatica hairy root culture by precursor feeding and elicitation. Plant Biotechnol Rep 14:43

    Google Scholar 

  178. Khan SA et al (2017) Pyrethrin accumulation in elicited hairy root cultures of Chrysanthemum cinerariaefolium. Plant Growth Regul 81(3):365–376

    CAS  Google Scholar 

  179. Singh P et al (2018) Silencing of quinolinic acid phosphoribosyl transferase (QPT) gene for enhanced production of scopolamine in hairy root culture of Duboisia leichhardtii. Sci Rep 8(1):13939

    PubMed  PubMed Central  Google Scholar 

  180. Abbasi BH et al (2012) Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Appl Biochem Biotechnol 168(7):2057–2066

    CAS  PubMed  Google Scholar 

  181. Srivastava M et al (2019) Elicitation enhanced the yield of glycyrrhizin and antioxidant activities in hairy root cultures of Glycyrrhiza glabra L. J Plant Growth Regul 38(2):373–384

    CAS  PubMed  Google Scholar 

  182. Khezerluo M, Hosseini B, Amiri J (2018) Sodium nitroprusside stimulated production of tropane alkaloids and antioxidant enzymes activity in hairy root culture of Hyoscyamus reticulatus L. Acta Biol Hung 69(4):437–448

    CAS  PubMed  Google Scholar 

  183. Wawrosch C et al (2014) Lignan formation in hairy root cultures of Edelweiss (Leontopodium nivale ssp. alpinum (Cass.) Greuter). Fitoterapia 97:219–223

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Palazon J et al (2003) Elicitation of different Panax ginseng transformed root phenotypes for an improved ginsenoside production. Plant Physiol Biochem 41(11–12):1019–1025

    CAS  Google Scholar 

  185. Santos PM et al (1998) Essential oils from hairy root cultures and from fruits and roots of Pimpinella anisum. Phytochemistry 48(3):455–460

    CAS  Google Scholar 

  186. Gangopadhyay M, Dewanjee S, Bhattacharya S (2011) Enhanced plumbagin production in elicited Plumbago indica hairy root cultures. J Biosci Bioeng 111(6):706–710

    CAS  PubMed  Google Scholar 

  187. Akhgari A et al (2019) Methyljasmonate elicitation increases terpenoid indole alkaloid accumulation in Rhazya stricta hairy root cultures. Plants (Basel) 8(12):534

    Google Scholar 

  188. Ghatge SR et al (2014) Effect of chitosan elicitation on alizarin production in hairy root cultures of Rubia cordifolia L. J Chitin Chitosan Sci 2:62

    Google Scholar 

  189. Park SU, Lee SY (2009) Anthraquinone production by hairy root culture of Rubia akane Nakai: influence of media and auxin treatment. Sci Res Essays 4(7):690–693

    Google Scholar 

  190. Marsh Z et al (2014) Effect of light, methyl jasmonate and cyclodextrin on production of phenolic compounds in hairy root cultures of Scutellaria lateriflora. Phytochemistry 107:50–60

    CAS  PubMed  Google Scholar 

  191. Khalili M, Hasanloo T, Tabar SKK (2010) Ag+ enhanced silymarin production in hairy root cultures of Silybum marianum (L.) Gaertn. Plant Omics 3(4):109–114

    CAS  Google Scholar 

  192. Rahimi S et al (2012) Methyl jasmonate influence on silymarin production and plant stress responses in Silybum marianum hairy root cultures in a bioreactor. Nat Prod Res 26(18):1662–1667

    CAS  PubMed  Google Scholar 

  193. Shilpha J et al (2015) Methyl jasmonate elicits the solasodine production and anti-oxidant activity in hairy root cultures of Solanum trilobatum L. Ind Crop Prod 71:54–64

    CAS  Google Scholar 

  194. Rodríguez Talou J, Giulietti AM (1995) In vitro thiophene production by transformed root cultures of Tagetes laxa (Cabrera). Biotechnol Lett 17(12):1337–1342

    Google Scholar 

  195. Wielanek M, Urbanek H (2006) Enhanced glucotropaeolin production in hairy root cultures of Tropaeolum majus L. by combining elicitation and precursor feeding. Plant Cell Tissue Organ Cult 86(2):177–186

    CAS  Google Scholar 

  196. Torkamani MRD et al (2014) Elicitation of valerenic acid in the hairy root cultures of Valeriana officinalis L (Valerianaceae). Trop J Pharm Res 13(6):943–949

    CAS  Google Scholar 

  197. Srivastava R, Srivastava R, Singh UM (2014) Understanding the patterns of gene expression during climate change. In: Climate Change Effect on Crop Productivity. CRC Press, Taylor & Francis Group, Boca Raton, FL, USA, pp. 279–328. ISBN 978-1-4822-2920-2

    Google Scholar 

  198. Agarwal N, Srivastava R, Verma A, Rai KM, Singh B, Verma PC (2020) Unravelling Cotton Nonexpressor of Pathogenesis-Related 1 (NPR1)-Like Genes Family: Evolutionary Analysis and Putative Role in Fiber Development and Defense Pathway. Plants 9(8):999

    Google Scholar 

  199. Pandey B, Prakash P, Verma PC, Srivastava R (2019) Regulated gene expression by synthetic modulation of the promoter architecture in plants. In: Current Developments in Biotechnology and Bioengineering: Synthetic Biology, Cell Engineering and Bioprocessing Technologies; Elsevier: Amsterdam, The Netherlands, pp. 235–255

    Google Scholar 

  200. Srivastava R, Rai KM, Srivastava R (2018) Plant biosynthetic engineering through transcription regulation: an insight into molecular mechanisms during environmental stress. In: Biosynthetic Technology and Environmental Challenges. Springer Nature Singapore Pte Ltd.: Singapore, pp. 51–72. ISBN 9789811074332. ISBN 9789811074349 (online)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Chandra Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kaur, G., Prakash, P., Srivastava, R., Verma, P.C. (2020). Enhanced Secondary Metabolite Production in Hairy Root Cultures Through Biotic and Abiotic Elicitors. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Enhanced Secondary Metabolite Production in Hairy Root Cultures Through Biotic and Abiotic Elicitors
    Published:
    19 April 2023

    DOI: https://doi.org/10.1007/978-3-030-11253-0_38-2

  2. Original

    Enhanced Secondary Metabolite Production in Hairy Root Cultures Through Biotic and Abiotic Elicitors
    Published:
    11 August 2020

    DOI: https://doi.org/10.1007/978-3-030-11253-0_38-1