Skip to main content

The Actuator Disc Concept

Handbook of Wind Energy Aerodynamics
  • 1059 Accesses

Abstract

Actuator disc theory is the simplest rotor theory possible: the rotor is replaced by a permeable disc carrying an axisymmetric force field. It is more than a century old, with a first analytical result obtained by Froude in 1889. In 1918 Joukowsky published the first rotor performance prediction for a helicopter rotor in hover; in 1920 Betz and Joukowsky published the maximum efficiency of wind turbine rotors. In modern rotor design codes, this momentum theory still forms the basis, be it with many adaptations and engineering add-ons. This chapter treats the actuator disc theory in two versions. Best known is the classical theory relating to an actuator disc with thrust acting against the flow but without torque, so without wake swirl. This theory gives the Betz-Joukowsky limit. The results deviate when applied to a flow annulus instead of the entire stream tube, due to the role of the pressure exerted by one annulus to the other. The momentum theory for discs with thrust and torque is relevant for rotors operating with high torque at low rotational speed. For increasing rotational speed, the performance increases from zero to the Betz-Joukowsky limit. In all flow cases, with or without torque, the velocity vector in the meridional plane appears to be constant at the disc. For the performance per annulus and the performance with torque, the deviation from the classical momentum theory is explained by classifying force fields as conservative or non-conservative and investigating their impact on energy and momentum balances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson HB, Milborrow DJ, Ross JN (1982) Performance and wake measurements on a 3 m diameter horizontal axis wind turbine rotor. In: Proceedings of 4th international symposium on wind energy systems. Stockholm, BHRA (1982)

    Google Scholar 

  • Batchelor GK (1970) An introduction to fluid dynamics. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9805II800955

    Google Scholar 

  • Betz A (1919) Schraubenpropeller mit geringstem Energieverlust. Reprint of 4 famous papers by Universitatsverlag Gottingen

    Google Scholar 

  • Betz A (1920) Das Maximum der theoretisch möglichen Ausnützung des Windes durch Windmotoren. Zeitschrift für das gesamte Turbinenwesen 26:307–309

    Google Scholar 

  • Branlard E (2017) Wind turbine aerodynamics and vorticity-based methods. Springer International Publishing. ISBN 9783319551630. https://doi.org/10.1007/978-3-319-55164-7

    Book  Google Scholar 

  • Burton T, Jenkins N, Sharpe DJ, Bossanyi E (2011) Wind energy handbook. Wiley. ISBN 9780471489979. https://doi.org/10.1002/0470846062

  • Crawford C (2006) Re-examination of the precepts of the blade element momentum theory for coning rotors. Wind Energy 9:457–478. https://doi.org/10.1002/we/197

    Article  Google Scholar 

  • Craze DJ (1977) On the near wake behind a circular disc. In: 6th Australasian hydraulics and fluid mechanics conference, pp 282–286

    Google Scholar 

  • de Vries O (1979) Fluid dynamic aspects of wind energy conversion, AGARD-AG-243. AGARD, Amsterdam. ISBN 9283513266, 9789283513261

    Google Scholar 

  • Froude RE (1889) On the part played in propulsion by differences of fluid pressure. In: 13th session of the institution of naval architects, vol 30, pp 390–405

    Google Scholar 

  • Glauert H (1926) The analysis of experimental results in the windmill brake and vortex ring state of an airscrew. Aeronautical Research Council R&M 1026, London

    Google Scholar 

  • Glauert H (1935) The general momentum theory. In: Aerodynamic theory volume IV division L. Springer, Berlin, reprinted as Dover Edition

    Google Scholar 

  • Goldstein S (1929) On the vortex theory of screw propellers. Proc R Soc Lond A 123:440–465

    Article  Google Scholar 

  • Goorjian PM (1972) An invalid equation in the general momentum theory of the actuator disk. AIAA J 10(4):543–544

    Article  Google Scholar 

  • Haans W, Sant T, Van Kuik GAM, van Bussel GJW (2008) HAWT near-wake aerodynamics, Part I: axial flow conditions. Wind Energy 11:245–264. https://doi.org/10.1002/we.262

    Article  Google Scholar 

  • Hansen MOL (2008) Aerodynamics of wind turbines. Earthscan. ISBN 9781844074389

    Google Scholar 

  • Joukowsky JN (1912) Vortex theory of the screw Propeller I. Trudy Avia Raschetno-Ispytatelnogo Byuro (in Russian) Also published in Gauthier-Villars et Cie.(eds) Theéorie Tourbillonnaire de l’Hélice Propulsive, Quatrième Mémoire. 1929; 1:1–47, 16(1):1–31

    Google Scholar 

  • Joukowsky JN (1918) Vortex theory of the screw propeller IV. Trudy Avia Raschetno-Ispy-tatelnogo Byuro (in Russian] Also published in Gauthier-Villars et Cie.(eds Théorie Tourbil-lonnaire de l’Hélice Propulsive, Quatrième Mémoire. 1929; 4:123–198, 3:1–97

    Google Scholar 

  • Joukowsky JN (1920) Joukowsky windmills of the NEJ type. In: Transactions of the central institute for aero-hydrodynamics of Moscow, pp 405–430

    Google Scholar 

  • Lignarolo LEM, Ferreira CS, van Bussel GJW (2016a) Experimental comparison of a wind turbine and of an actuator disc wake. J Renew Sustain Energy 8(023301):1–26. ISSN 1941-7012. https://doi.org/10.1063/1.4941926

    Article  Google Scholar 

  • Lignarolo LEM, Mehta D, Stevens RJAM, Yilmaz AE, Meyers J, Andersen SJ, van Kuik GAM, Meneveau C, Holierhoek J, Simão Ferreira CJ, Ragni D, van Bussel GJW (2016b) Validation of four LES and a vortex model against PIV measurements of the near wake of an actuator disk and a wind turbine. Renew Energy 94:510–523. ISSN 09601481. https://doi.org/10.1016/j.renene.2016.03.070

    Article  Google Scholar 

  • Madsen HA (1996) A CFD analysis of the actuator disc flow compared with momentum theory results. In: 10th IEA aerodynamic expert meeting, pp 109–124

    Google Scholar 

  • Madsen HA, Mikkelsen RF, Øye S, Bak C, Johansen J (2007) A detailed investigation of the blade element momentum (BEM) model based on analytical and numerical results and proposal for modifications of the BEM model. J Phys Conf Ser 75:012016. ISSN 1742-6596. https://doi.org/10.1088/1742-6596/75/1/012016

    Google Scholar 

  • Madsen HA, Bak C, Døssing M, Mikkelsen RF, Øye S (2010) Validation and modification of the blade element momentum theory based on comparisons with actuator disc simulations. Wind Energy 13:373–389. https://doi.org/10.1002/we359

    Article  Google Scholar 

  • Martínez-Tossas LA, Churchfield MJ, Meneveau C (2017) Optimal smoothing length scale for actuator line models of wind turbine blades based on Gaussian body force distribution. Wind Energy 20(6):1083–1106. https://doi.org/10.1002/we.2081

    Article  Google Scholar 

  • Medici D, Alfredsson PH (2006) Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding. Wind Energy 9:219–236. https://doi.org/10.1002/we/156

    Article  Google Scholar 

  • Mikkelsen RF, Øye S, Sørensen JN, Madsen HA, Shen WZ (2009) Analysis of wake expansion and induction near tip. In: Proceedings EWEC2009, Marseille

    Google Scholar 

  • Okulov VL (2014) Limit cases for rotor theories with Betz optimization. J Phys Conf Ser 524:012129. ISSN 1742-6596. https://doi.org/10.1088/1742-6596/524/1/012129

    Google Scholar 

  • Okulov VL, Sørensen JN (2010) Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. J Fluid Mech 649:497–508. ISSN 0022-1120. https://doi.org/10.1017/S0022112010000509

    Article  Google Scholar 

  • Okulov VL, van Kuik GAM (2012) The Betz – Joukowsky limit: on the contribution to rotor aerodynamics by the British, German and Russian scientific schools. Wind Energy 15:335–344. https://doi.org/10.1002/we/464

    Article  Google Scholar 

  • Okulov VL, Sørensen JN, Wood DH (2015) Rotor theories by Professor Joukowsky: vortex theories. Prog Aerosp Sci 73:19–46. ISSN 03760421. https://doi.org/10.1016/j.paerosci.2014.10.002

    Article  Google Scholar 

  • Øye S (1990) A simple vortex model. In: McAnulty KF (ed) Third IEA symposium on the aerodynamics of wind turbine, pp 1–15, Harwell. ETSU

    Google Scholar 

  • Parra EA, Boorsma K, Schepers JG, Snel H (2016) Momentum considerations on the New MEXICO experiment. J Phys Conf Ser 753:072001. ISSN 1742-6588. https://doi.org/10.1088/1742-6596/753/7/072001

    Google Scholar 

  • Prandtl L (1918) Tragflügeltheorie I. Mitteilung. Nachrichten der Königlichem Gesellschaft der Wissenschaften zü Göttingen, Mathematisch-physikalische Klasse, pp 451–477

    Google Scholar 

  • Saffman PG (1992) Vortex dynamics, monographs edition. University Press, Cambridge. ISBN 052142058X, 9780521420587

    Google Scholar 

  • Sharpe DJ (2004) A general momentum theory applied to an energy-extracting actuator disc. Wind Energy 7(3):177–188. ISSN 1095-4244. https://doi.org/10.1002/we.118

    Article  Google Scholar 

  • Shen WZ, Mikkelsen RF, Sørensen JN, Bak C (2005) Tip loss corrections for wind turbine computations. Wind Energy 8(4):457–475. ISSN 1095-4244. https://doi.org/10.1002/we.153

    Article  Google Scholar 

  • Shen WZ, Zhu WJ, Sørensen JN (2014) Study of tip loss corrections using CFD rotor computations. J Phys Conf Ser 555:012094. ISSN 1742-6588. https://doi.org/10.1088/1742-6596/555/1/012094

    Google Scholar 

  • Sørensen JN (2015) General momentum theory for horizontal axis wind turbines. Springer International Publishing, Heidelberg. ISBN 978-3-319-22113-7. https://doi.org/10.1007/978-3-319-22114-4

    Google Scholar 

  • Sørensen JN, Mikkelsen RF (2001) On the validity of the blade element momentum method. In: EWEC2001, Copenhagen, pp 362–366

    Google Scholar 

  • Sørensen JN, van Kuik GAM (2011a) Aerodynamic aspects of wind energy conversion. Annu Rev Fluid Mech 43(1):427–448. ISSN 0066-4189. https://doi.org/10.1146/annurev-fluid-l22l09-l6080l

  • Sørensen JN, van Kuik GAM (2011b) General momentum theory for wind turbines at low tip speed ratios. Wind Energy 14:821–839. https://doi.org/10.1002/we.423

    Article  Google Scholar 

  • Sørensen JN, Shen WZ, Munduate X (1998) Analysis of wake states by a full field actuator disc model. Wind Energy 88:73–88. https://doi.org/10.1002/(SICI)1099--1824(199812)1:2<73::AID--WEI2>3.0.CO;2-L

    Article  Google Scholar 

  • Sørensen JN, Dag KO, Ramos-García N (2014) A new tip correction based on the decambering approach. J Phys Conf Ser 524(Torque2014):012097. ISSN 1742-6596. https://doi.org/10.1088/1742-6596/524/1/012097

    Google Scholar 

  • Sørensen JN, Dag KO, Ramos-García N (2015) A refined tip correction based on decambering. Wind Energy 19(5):787–802. https://doi.org/10.1002/we/1865

    Article  Google Scholar 

  • Thoma D (1925) Grundsatzliches zur einfachen Strahltheorie der Schraube. Zeitschrift für Flugtechnik und Motorluftschiffahrt 16(10):206–208

    Google Scholar 

  • Thwaites B (1960) Incompressible aerodynamics. Clarendon Press, Oxford. ISBN 978-0486654652

    Google Scholar 

  • van Holten T (1981) Concentrator systems for wind energy, with emphasis on tip-vanes. Wind Eng 5(1):29–45

    Google Scholar 

  • van Kuik GAM (2017) Joukowsky actuator disc momentum theory. Wind Energy Sci 2:307–316. ISSN 2366-7621. https://doi.org/10.5194/wes-20l6-55

  • van Kuik GAM (2018a) Comparison of actuator disc flows representing wind turbines and propellers. J Phys Conf Ser 1037(Torque2018):1–10

    Google Scholar 

  • van Kuik GAM (2018b) The fluid dynamic basis for actuator disc and rotor theories, open acces edition. IOS Press, Amsterdam. ISBN 978-1-61499-865-2. https://doi.org/10.3233/978-1-61499-866-2-i

  • van Kuik GAM, Lignarolo LEM (2016) Potential flow solutions for energy extracting actuator disc flow. Wind Energy 19:1391–1406. https://doi.org/10.1002/we1902

    Article  Google Scholar 

  • van Kuik GAM, Yu W, Sarmast S, Ivanell S (2015a) Comparison of actuator disc and Joukowsky rotor flows, to explore the need for a tip correction. J Phys Conf Ser 625:012013. https://doi.org/10.1088/1742-6596/625/1/012013

    Article  Google Scholar 

  • van Kuik GAM, Sørensen JN, Okulov VL (2015b) Rotor theories by Professor Joukowsky: momentum theories. Progress Aerospace Sci 73:1–18. ISSN 03760421. https://doi.org/10.1016/j.paerosci.2014.10.001

    Article  Google Scholar 

  • von Kármán T, Burgers TM (1935) Motion of a perfect fluid produced by external forces. In: Aerodynamic theory, vol Π Division E Chapt. IIIA. Springer, Berlin

    Google Scholar 

  • Wilmshurst S, Metherell AJF, Wilson DMA, Milborrow DJ, Ross JN (1984) Wind turbine rotor performance in the high thrust region. In: Sixth BWEA conference, 1984

    Google Scholar 

  • Wood DH (2007) Including swirl in the actuator disk analysis of wind turbines. Wind Eng 31(5):317–323.

    Article  Google Scholar 

  • Wood DH (2015) Maximum wind turbine performance at low tip speed ratio. J Renew Sustain Energy 7:053126. https://doi.org/10.1063/1.4934895

    Article  Google Scholar 

  • Xiros MI, Xiros NI (2007) Remarks on wind turbine power absorption increase by including the axial force due to the radial pressure gradient in the general momentum theory. Wind Energy 10(1):99–102. ISSN 10954244. https://doi.org/10.1002/we203

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. M. van Kuik .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

van Kuik, G.A.M. (2020). The Actuator Disc Concept. In: Stoevesandt, B., Schepers, G., Fuglsang, P., Yuping, S. (eds) Handbook of Wind Energy Aerodynamics. Springer, Cham. https://doi.org/10.1007/978-3-030-05455-7_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05455-7_2-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05455-7

  • Online ISBN: 978-3-030-05455-7

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    The Actuator Disc Concept
    Published:
    09 November 2020

    DOI: https://doi.org/10.1007/978-3-030-05455-7_2-2

  2. Original

    The Actuator Disc Concept
    Published:
    04 May 2020

    DOI: https://doi.org/10.1007/978-3-030-05455-7_2-1