Skip to main content

Femoral Deformities: Varus, Valgus, Retroversion, and Anteversion

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Hip Arthroscopy and Hip Joint Preservation Surgery
  • 51 Accesses

Abstract

Osteoarthritis of the hip is almost always due to a structural abnormality. These abnormalities may include any of the following, often in bewildering combinations: acetabular dysplasia, femoroacetabular impingement (FAI), coxa valga, coxa vara, and retroversion or excessive anteversion of the femur or acetabulum. Femoral osteotomy is a powerful tool to correct these deformities. The most commonly employed types are varus or valgus intertrochanteric, with or without derotation. Extension or flexion of the intertrochanteric osteotomy may be added if it is desirous to change the head position in the sagittal plane. Pure derotation osteotomies may be performed alone if abnormal version is the sole deformity.

Historically, femoral osteotomies were employed in a “salvage” mode for pain relief. Since the advent of total hip arthroplasty, femoral osteotomy is now best suited to a “hip preservation” mode. It is important to determine which of these abnormalities may be present, with the realization that it may require additional radiographic studies, such as CT scans, to make the correct diagnosis. This is especially important with version abnormalities, which can be very difficult to diagnose on plain radiographs. A thorough physical examination is critical to assess range of motion, leg length, and the foot progression angle, since these may all be altered with a corrective osteotomy. It is important to remember that correcting one deformity (such as excessive femoral anteversion) may exacerbate another, such as FAI.

When correctly executed, femoral osteotomy can provide long-term pain relief and functional improvement. The procedure may also obviate the necessity of total hip arthroplasty, especially if performed before the onset of significant articular cartilage damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Boyer DW, Mickelson MR, Ponseti IV. Slipped capital femoral epiphysis. Long-term follow-up study of one hundred and twenty-one patients. J Bone Joint Surg [Am]. 1981;63(1):85–95.

    Article  CAS  Google Scholar 

  2. Harris WH. Etiology of osteoarthritis of the hip. Clin Orthop. 1986;213:20–33.

    Google Scholar 

  3. Goodman DA, Feighan JE, Smith AD, Latimer B, Buly RL, Cooperman DR. Subclinical slipped capital epiphysis. relationship to osteoarthrosis of the hip. J Bone Joint Surg Am. 1997;79:1489–97.

    Article  CAS  PubMed  Google Scholar 

  4. Harris WH. The correlation between minor or unrecognized developmental deformities and the development of osteoarthritis of the hip. Instr Course Lect. 2009;58:257–9.

    PubMed  Google Scholar 

  5. Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop. 2003;417:112–20.

    Google Scholar 

  6. Allen D, Beaule PE, Ramadan O, Doucette S. Prevalence of associated deformities and hip pain in patients with cam-type femoroacetabular impingement. J Bone Joint Surg Br. 2009;91(5):589–94.

    Article  CAS  PubMed  Google Scholar 

  7. Moya LE, Buly RL, Henn RF, Kelly BT, Ma Y, Molisani D. Femoral retroversion in patients with femoroacetabular impingement: a cofactor in the development of hip osteoarthritis. J Bone Joint Surg Br. 2010;92(suppl IV):526.

    Google Scholar 

  8. Pauwels F. Biomechanics of the normal and diseased hip. Theoretical foundation, technique and results: an atlas. Berlin: Springer; 1976.

    Google Scholar 

  9. Ganz R, Klaue K, Vinh TS, Mast JW. A new periacetabular osteotomy for the treatment of hip dysplasias. Technique and preliminary results. Clin Orthop. 1988;232:26–36.

    Google Scholar 

  10. Voss C. Coxarthrosis; the temporary hanging hip, a new procedure for operative treatment of painful hip in the aged and other chronic deforming diseases of the hip. Munch Med Wochenschr. 1956;98(28):954–6.

    CAS  PubMed  Google Scholar 

  11. McMurray TP. Osteo-arthritis of the hip joint. 1939 [classical article]. Clin Orthop. 1990;261:3–10.

    Google Scholar 

  12. Pauwels F. Diseases of the hip of mechanical origin and their treatment by adduction osteotomy. Rev Chir Orthop reparatrice Appar Mot. 1951;37(1):22–30.

    CAS  PubMed  Google Scholar 

  13. Valgus MP, Intertrochanteric Osteotomy and Tenotomy(Pauwels II). Biomechanics of the hip. Berlin: Springer; 1985. p. 102–33.

    Google Scholar 

  14. Varus MP. Intertrochanteric osteotomy (Pauwels I). Biomechanics of the hip. Berlin: Springer; 1985. p. 76–101.

    Google Scholar 

  15. Muller ME. Intertrochanteric osteotomy: indication, preoperative planning, technique. In: Schatzker J, editor. The intertrochanteric osteotomy. Berlin: Springer; 1984. p. 25–66.

    Chapter  Google Scholar 

  16. Schneider R. Intertrochanteric osteotomy in osteoarthritis of the hip joint. In: Schatzker J, editor. The intertrochanteric osteotomy. Berlin: Springer; 1984. p. 135–77.

    Chapter  Google Scholar 

  17. Bombelli R, Gerundini M, Aronson J. The biomechanical basis for osteotomy in the treatment of osteoarthritis of the hip: results in younger patients. Hip. 1984:18–42.

    Google Scholar 

  18. Santore RF, Bombelli R. Long-term follow-up of the Bombelli experience with osteotomy for osteoarthritis: results at 11 years. Hip. 1983:106–28.

    Google Scholar 

  19. Winquist RA. Closed intramedullary osteotomies of the femur. Clin Orthop. 1986;212:155–64.

    Google Scholar 

  20. Chapman ME, Duwelius PJ, Bray TJ, Gordon JE. Closed intramedullary femoral osteotomy. Shortening and derotation procedures. Clin Orthop. 1993;287:245–51.

    Google Scholar 

  21. Jaarsma RL, van Kampen A. Rotational malalignment after fractures of the femur. J Bone Joint Surg Br. 2004;86(8):1100–4.

    Article  CAS  PubMed  Google Scholar 

  22. Stahl JP, Alt V, Kraus R, Hoerbelt R, Itoman M, Schnettler R. Derotation of post-traumatic femoral deformities by closed intramedullary sawing. Injury. 2006;37(2):145–51.

    Article  PubMed  Google Scholar 

  23. Buly RL, Sosa BR, Poultsides LA, Caldwell E, Rozbruch SR. Femoral derotation osteotomy in adults for version abnormalities. J Am Acad Orthop Surg. 2018;26(19):e416–e25.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kamath AF, Ganz R, Zhang H, Grappiolo G, Leunig M. Subtrochanteric osteotomy for femoral mal-torsion through a surgical dislocation approach. J Hip Preserv Surg. 2015;2(1):65–79.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hatem M, Khoury AN, Richard EL, Jones AL, Martin HD. Femoral derotation osteotomy improves hip and spine function in patients with increased or decreased femoral torsion. Arthroscopy. 2021;37(1):111–123.

    Google Scholar 

  26. Lerch TD, Schmaranzer F, Steppacher SD, Ziebarth K, Tannast M, Siebenrock KA. Most of patients with femoral derotation osteotomy for posterior extraarticular hip impingement and high femoral version would do surgery again. Hip Int. 2020:1120700020953100.

    Google Scholar 

  27. Rigling D, Zingg PO, Dora C. Subtrochanteric rotational osteotomy for young adults with hip pain due to femoral maltorsion. Hip Int. 2020:1120700020943811.

    Google Scholar 

  28. Lerch TD, Eichelberger P, Baur H, Schmaranzer F, Liechti EF, Schwab JM, et al. Prevalence and diagnostic accuracy of in-toeing and out-toeing of the foot for patients with abnormal femoral torsion and femoroacetabular impingement: implications for hip arthroscopy and femoral derotation osteotomy. Bone Joint J. 2019;101-b(10):1218–29.

    Article  PubMed  Google Scholar 

  29. Crane L. Femoral torsion and its relation to toeing-in and toeing-out. J Bone Joint Surg Am. 1959;41-A(3):421–8.

    Article  CAS  PubMed  Google Scholar 

  30. Tonnis D, Heinecke A. Acetabular and femoral anteversion: relationship with osteoarthritis of the hip. J Bone Joint Surg Am. 1999;81(12):1747–70.

    Article  CAS  PubMed  Google Scholar 

  31. Meyers WC, McKechnie A, Philippon MJ, Horner MA, Zoga AC, Devon ON. Experience with “sports hernia” spanning two decades. Ann Surg. 2008;248(4):656–65.

    Article  PubMed  Google Scholar 

  32. Tannast M, Zheng G, Anderegg C, Burckhardt K, Langlotz F, Ganz R, et al. Tilt and rotation correction of acetabular version on pelvic radiographs. Clin Orthop Relat Res. 2005;438:182–90.

    Article  CAS  PubMed  Google Scholar 

  33. Zaltz I, Kelly BT, Hetsroni I, Bedi A. The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res. 2013;471(8):2463–70.

    Article  PubMed  Google Scholar 

  34. Meyer DC, Beck M, Ellis T, Ganz R, Leunig M. Comparison of six radiographic projections to assess femoral head/neck asphericity. Clin Orthop Relat Res. 2006;445:181–5.

    Article  PubMed  Google Scholar 

  35. Lequesne M, de Seze S. La faux profil du bassin: nouvelle incidence radiographique pour l'etude de la hanche. Son utilite dans les dysplasies et les differentes coxopathies. Rev Rhum. 1961;28:643–52.

    CAS  PubMed  Google Scholar 

  36. Tonnis D. Congenital dysplasia and dislocation of the hip in children and adults. Berlin: Springer; 1987. p. 121–3.

    Book  Google Scholar 

  37. Wiberg G. Studies on the dysplastic acetabulum and congenital subluxation of the hip joint. Acta Chir Scand. 1939;83(Suppl. 58):1–135.

    Google Scholar 

  38. Tonnis D. Normal values of the hip joint for the evaluation of X-rays in children and adults. Clin Orthop Relat Res. 1976;119:39–47.

    Google Scholar 

  39. Notzli HP, Wyss TF, Stoecklin CH, Schmid MR, Treiber K, Hodler J. The contour of the femoral head-neck junction as a predictor for the risk of anterior impingement. J Bone Joint Surg Br. 2002;84(4):556–60.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds D, Lucas J, Klaue K. Retroversion of the acetabulum. A cause of hip pain. J Bone Joint Surg Br. 1999;81(2):281–8.

    Article  CAS  PubMed  Google Scholar 

  41. Martinez AE, Li SM, Ganz R, Beck M. Os acetabuli in femoro-acetabular impingement: stress fracture or unfused secondary ossification centre of the acetabular rim? Hip Int. 2006;16(4):281–6.

    Article  CAS  PubMed  Google Scholar 

  42. Duplantier NL, McCulloch PC, Nho SJ, Mather RC 3rd, Lewis BD, Harris JD. Hip dislocation or subluxation after hip arthroscopy: a systematic review. Arthroscopy. 2016;32(7):1428–34.

    Article  PubMed  Google Scholar 

  43. Toomayan GA, Holman WR, Major NM, Kozlowicz SM, Vail TP. Sensitivity of MR arthrography in the evaluation of acetabular labral tears. AJR Am J Roentgenol. 2006;186(2):449–53.

    Article  PubMed  Google Scholar 

  44. Mintz DN, Hooper T, Connell D, Buly R, Padgett DE, Potter HG. Magnetic resonance imaging of the hip: detection of labral and chondral abnormalities using noncontrast imaging. Arthroscopy. 2005;21(4):385–93.

    Article  PubMed  Google Scholar 

  45. Kim YJ, Jaramillo D, Millis MB, Gray ML, Burstein D. Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am. 2003;85-A(10):1987–92.

    Article  Google Scholar 

  46. Bittersohl B, Miese FR, Hosalkar HS, Mamisch TC, Antoch G, Krauspe R, et al. T2* mapping of acetabular and femoral hip joint cartilage at 3 T: a prospective controlled study. Investig Radiol. 2012;47(7):392–7.

    Article  CAS  Google Scholar 

  47. Beaule PE, Zaragoza E, Motamedi K, Copelan N, Dorey FJ. Three-dimensional computed tomography of the hip in the assessment of femoroacetabular impingement. J Orthop Res. 2005;23(6):1286–92.

    Article  PubMed  Google Scholar 

  48. Heyworth BE, Dolan MM, Nguyen JT, Chen NC, Kelly BT. Preoperative three-dimensional CT predicts intraoperative findings in hip arthroscopy. Clin Orthop Relat Res. 2012;470(7):1950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kalia V, Fader RF, Mintz DN, Bogner EA, Buly RL, Carrino JA, et al. Quantitative evaluation of hip impingement utilizing computed tomography measurements. J Bone Joint Surg Am. 2018;100(17):1526–35.

    Article  PubMed  Google Scholar 

  50. Lerch TD, Todorski IAS, Steppacher SD, Schmaranzer F, Werlen SF, Siebenrock KA, et al. Prevalence of femoral and acetabular version abnormalities in patients with symptomatic hip disease: a controlled study of 538 hips. Am J Sports Med. 2018;46(1):122–34.

    Article  PubMed  Google Scholar 

  51. Bedi A, Dolan M, Hetsroni I, Magennis E, Lipman J, Buly R, et al. Surgical treatment of femoroacetabular impingement improves hip kinematics: a computer-assisted model. Am J Sports Med. 2011;39 Suppl:43s–9s.

    Google Scholar 

  52. Bedi A, Dolan M, Magennis E, Lipman J, Buly R, Kelly BT. Computer-assisted modeling of osseous impingement and resection in femoroacetabular impingement. Arthroscopy. 2012;28(2):204–10.

    Article  PubMed  Google Scholar 

  53. Milone MT, Bedi A, Poultsides L, Magennis E, Byrd JW, Larson CM, et al. Novel CT-based three-dimensional software improves the characterization of cam morphology. Clin Orthop Relat Res. 2013;471(8):2484–91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Scheys L, Spaepen A, Suetens P, Jonkers I. Calculated moment-arm and muscle-tendon lengths during gait differ substantially using MR based versus rescaled generic lower-limb musculoskeletal models. Gait Posture. 2008;28(4):640–8.

    Article  PubMed  Google Scholar 

  55. Siebenrock KA, Steppacher SD, Haefeli PC, Schwab JM, Tannast M. Valgus hip with high antetorsion causes pain through posterior extraarticular FAI. Clin Orthop Relat Res. 2013;471(12):3774–80.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gomez-Hoyos J, Schroder R, Reddy M, Palmer IJ, Martin HD. Femoral neck anteversion and lesser trochanteric retroversion in patients with ischiofemoral impingement: a case-control magnetic resonance imaging study. Arthroscopy. 2016;32(1):13–8.

    Article  PubMed  Google Scholar 

  57. Yang GM, Wang YY, Zuo LX, Li FQ, Dai YK, Wang F. Good outcomes of combined femoral derotation osteotomy and medial retinaculum plasty in patients with recurrent patellar dislocation. Orthop Surg. 2019;11(4):578–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franciozi CE, Ambra LF, Albertoni LJ, Debieux P, Rezende FC, Oliveira MA, et al. Increased femoral anteversion influence over surgically treated recurrent patellar instability patients. Arthroscopy. 2017;33(3):633–640.

    Google Scholar 

  59. Zhang Z, Zhang H, Song G, Zheng T, Ni Q, Feng H. Increased femoral anteversion is associated with inferior clinical outcomes after MPFL reconstruction and combined tibial tubercle osteotomy for the treatment of recurrent patellar instability. Knee Surg Sports Traumatol Arthrosc. 2020;28(7):2261–9.

    Article  PubMed  Google Scholar 

  60. Liebensteiner MC, Ressler J, Seitlinger G, Djurdjevic T, El Attal R, Ferlic PW. High femoral anteversion is related to femoral trochlea dysplasia. Arthroscopy. 2016;32(11):2295–9.

    Article  PubMed  Google Scholar 

  61. Eckhoff DG, Montgomery WK, Kilcoyne RF, Stamm ER. Femoral morphometry and anterior knee pain. Clin Orthop Relat Res. 1994;302:64–8.

    Google Scholar 

  62. Eckhoff DG. Effect of limb malrotation on malalignment and osteoarthritis. Orthop Clin North Am. 1994;25(3):405–14.

    Article  CAS  PubMed  Google Scholar 

  63. Chadayammuri V, Garabekyan T, Bedi A, Pascual-Garrido C, Rhodes J, O’Hara J, et al. Passive hip range of motion predicts femoral torsion and acetabular version. J Bone Joint Surg Am. 2016;98(2):127–34.

    Article  PubMed  Google Scholar 

  64. Kraeutler MJ, Chadayammuri V, Garabekyan T, Mei-Dan O. Femoral version abnormalities significantly outweigh effect of cam impingement on hip internal rotation. J Bone Joint Surg Am. 2018;100(3):205–10.

    Article  PubMed  Google Scholar 

  65. Terjesen T, Benum P, Anda S, Svenningsen S. Increased femoral anteversion and osteoarthritis of the hip joint. Acta Orthop Scand. 1982;53(4):571–5.

    Article  CAS  PubMed  Google Scholar 

  66. Tonnis D, Heinecke A. Diminished femoral antetorsion syndrome: a cause of pain and osteoarthritis. J Pediatr Orthop. 1991;11(4):419–31.

    Article  CAS  PubMed  Google Scholar 

  67. Tonnis D, Heinecke A. Decreased acetabular anteversion and femur neck antetorsion cause pain and arthrosis. 2: etiology, diagnosis and therapy. Z Orthop Grenzgeb. 1999;137(2):160–7.

    Article  CAS  Google Scholar 

  68. Lerch TD, Boschung A, Todorski IAS, Steppacher SD, Schmaranzer F, Zheng G, et al. Femoroacetabular impingement patients with decreased femoral version have different impingement locations and intra- and extraarticular anterior subspine FAI on 3D-CT-based impingement simulation: implications for hip arthroscopy. Am J Sports Med. 2019;47(13):3120–32.

    Article  PubMed  Google Scholar 

  69. Fabricant PD, Fields KG, Taylor SA, Magennis E, Bedi A, Kelly BT. The effect of femoral and acetabular version on clinical outcomes after arthroscopic femoroacetabular impingement surgery. J Bone Joint Surg Am. 2015;97(7):537–43.

    Article  PubMed  Google Scholar 

  70. Fabricant PD, Sankar WN, Seeley MA, Beaule PE, Clohisy JC, Kim YJ, et al. Femoral deformity may be more predictive of hip range of motion than severity of acetabular disease in patients with acetabular dysplasia: an analysis of the ANCHOR cohort. J Am Acad Orthop Surg. 2016;24(7):465–74.

    Article  PubMed  Google Scholar 

  71. Sankar WN, Novais E, Koueiter D, Refakis C, Sink E, Millis MB, et al. Analysis of femoral version in patients undergoing periacetabular osteotomy for symptomatic acetabular dysplasia. J Am Acad Orthop Surg. 2018;26(15):545–51.

    Article  PubMed  Google Scholar 

  72. Moya LE, Molisani D, Henn F, Ma Y, Kelly BT, Buly RL. Femoral retroversion in patients with femoroacetabular impingement: a cofactor in the development of hip osteoarthritis. Orthopaedic Research Society 55th Annual Meeting; February 2009; Las Vegas, NV2009.

    Google Scholar 

  73. Cooperman DR, Charles LM, Pathria M, Latimer B, Thompson GH. Post-mortem description of slipped capital femoral epiphysis. J Bone Joint Surg (Br). 1992;74(4):595–9.

    Article  CAS  Google Scholar 

  74. Iwersen LJ, Kalen V, Eberle C. Relative trochanteric overgrowth after ischemic necrosis in congenital dislocation of the hip. J Pediatr Orthop. 1989;9(4):381–5.

    Article  CAS  PubMed  Google Scholar 

  75. Wagner H. Treatment of osteoarthritis of the hip by corrective osteotomy of the greater trochanter. In: Schatzker J, editor. The intertrochanteric osteotomy. Berlin: Springer; 1984. p. 179–201.

    Chapter  Google Scholar 

  76. Lloyd-Roberts GC, Wetherill MH, Fraser M. Trochanteric advancement for premature arrest of the femoral capital growth plate. J Bone Joint Surg (Br). 1985;67(1):21–4.

    Article  CAS  Google Scholar 

  77. Macnicol MF, Makris D. Distal transfer of the greater trochanter. J Bone Joint Surg (Br). 1991;73(5):838–41.

    Article  CAS  Google Scholar 

  78. Ganz R, Huff TW, Leunig M. Extended retinacular soft-tissue flap for intra-articular hip surgery: surgical technique, indications, and results of application. Instr Course Lect. 2009;58:241–55.

    PubMed  Google Scholar 

  79. McAndrew MP, Weinstein SL. A long-term follow-up of Legg-Calve-Perthes disease. J Bone Joint Surg Am. 1984;66(6):860–9.

    Article  CAS  PubMed  Google Scholar 

  80. Stulberg SD, Cooperman DR, Wallensten R. The natural history of Legg-Calve-Perthes disease. J Bone Joint Surg Am. 1981;63(7):1095–108.

    Article  CAS  PubMed  Google Scholar 

  81. Voos JE, Ranawat AS, Pellicci PM, Buly RL, Salvati EA. Varus rotational osteotomies for adults with hip dysplasia: a 20-year followup. Clin Orthop Relat Res. 2007;457:138–43.

    Article  PubMed  Google Scholar 

  82. Trousdale RT, Ekkernkamp A, Ganz R, Wallrichs SL. Periacetabular and intertrochanteric osteotomy for the treatment of osteoarthrosis in dysplastic hips. J Bone Joint Surg Am. 1995;77(1):73–85.

    Article  CAS  PubMed  Google Scholar 

  83. Larson CM, Giveans MR, Taylor M. Does arthroscopic FAI correction improve function with radiographic arthritis? Clin Orthop Relat Res. 2011;469(6):1667–76.

    Article  PubMed  Google Scholar 

  84. Murphy S, Tannast M, Kim YJ, Buly R, Millis MB. Debridement of the adult hip for femoroacetabular impingement: indications and preliminary clinical results. Clin Orthop. 2004;1(429):178–81.

    Article  Google Scholar 

  85. Ipach I, Mittag F, Walter C, Syha R, Wolf P, Kluba T. The prevalence of acetabular anomalies associated with pistol-grip-deformity in osteoarthritic hips. Orthop Traumatol Surg Res. 2013;99(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  86. Dolan MM, Heyworth BE, Bedi A, Duke G, Kelly BT. CT reveals a high incidence of osseous abnormalities in hips with labral tears. Clin Orthop Relat Res. 2011;469(3):831–8.

    Article  PubMed  Google Scholar 

  87. Ganz R, Leunig M. Morphological variations of residual hip dysplasia in the adult. Hip Int. 2007;17(Suppl 5):S22–8.

    Article  PubMed  Google Scholar 

  88. Li PL, Ganz R. Morphologic features of congenital acetabular dysplasia: one in six is retroverted. Clin Orthop. 2003;416:245–53.

    Article  Google Scholar 

  89. Lerch TD, Schmaranzer F, Hanke MS, Leibold C, Steppacher SD, Siebenrock KA, et al. Torsional deformities of the femur in patients with femoroacetabular impingement: dynamic 3D impingement simulation can be helpful for the planning of surgical hip dislocation and hip arthroscopy. Orthopade. 2020;49(6):471–81.

    Article  PubMed  Google Scholar 

  90. Lerch TD, Degonda C, Schmaranzer F, Todorski I, Cullmann-Bastian J, Zheng G, et al. Patient-Specific 3-D magnetic resonance imaging-based dynamic simulation of hip impingement and range of motion can replace 3-D computed tomography-based simulation for patients with femoroacetabular impingement: implications for planning open hip preservation surgery and hip arthroscopy. Am J Sports Med. 2019;47(12):2966–77.

    Article  PubMed  Google Scholar 

  91. Tannast M, Kubiak-Langer M, Langlotz F, Puls M, Murphy SB, Siebenrock KA. Noninvasive three-dimensional assessment of femoroacetabular impingement. J Orthop Res. 2007;25(1):122–31.

    Article  PubMed  Google Scholar 

  92. Leunig M, Ganz R. The evolution and concepts of joint-preserving surgery of the hip. Bone Joint J. 2014;96(1):5–18.

    Article  PubMed  Google Scholar 

  93. Haverkamp D, Marti RK. Bilateral varus osteotomies in hip deformities: are early interventions superior? A long-term follow-up. Int Orthop. 2007;31(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  94. Ito H, Matsuno T, Minami A. Intertrochanteric varus osteotomy for osteoarthritis in patients with hip dysplasia: 6 to 28 years followup. Clin Orthop Relat Res. 2005;433:124–8.

    Article  Google Scholar 

  95. Iwase T, Hasegawa Y, Kawamoto K, Iwasada S, Yamada K, Iwata H. Twenty years’ followup of intertrochanteric osteotomy for treatment of the dysplastic hip. Clin Orthop. 1996;331:245–55.

    Article  Google Scholar 

  96. Ansari A, Jones S, Hashemi-Nejad A, Catterall A. Varus proximal femoral osteotomy for hip dysplasia in adults. Hip Int. 2008;18(3):200–6.

    Article  CAS  PubMed  Google Scholar 

  97. Zweifel J, Honle W, Schuh A. Long-term results of intertrochanteric varus osteotomy for dysplastic osteoarthritis of the hip. Int Orthop. 2011;35(1):9–12.

    Article  PubMed  Google Scholar 

  98. Koulouvaris P, Stafylas K, Aznaoutoglou C, Zacharis K, Xenakis T. Isolated varus intertrochanteric osteotomy for hip dysplasia in 52 patients: long-term results. Int Orthop. 2007;31(2):193–8.

    Article  CAS  PubMed  Google Scholar 

  99. Southwick WO. Osteotomy through the lesser trochanter for slipped capital femoral epiphysis. J Bone Joint Surg Am. 1967;49(5):807–35.

    Article  CAS  PubMed  Google Scholar 

  100. Imhauser G. Late results of Imhauser’s osteotomy for slipped capital femoral epiphysis (author’s transl). Z Orthop. 1977;115(5):716–25.

    CAS  PubMed  Google Scholar 

  101. Schai PA, Exner GU. Corrective Imhauser intertrochanteric osteotomy. Oper Orthop Traumatol. 2007;19(4):368–88.

    Article  PubMed  Google Scholar 

  102. Kuzyk PR, Kim YJ, Millis MB. Surgical management of healed slipped capital femoral epiphysis. J Am Acad Orthop Surg. 2011;19(11):667–77.

    Article  PubMed  Google Scholar 

  103. Leunig M, Slongo T, Ganz R. Subcapital realignment in slipped capital femoral epiphysis: surgical hip dislocation and trimming of the stable trochanter to protect the perfusion of the epiphysis. Instr Course Lect. 2008;57:499–507.

    PubMed  Google Scholar 

  104. Varghese VD, Boopalan PR, Titus VT, Oommen AT, Jepegnanam TS. Indices affecting outcome of neglected femoral neck fractures following valgus intertrochanteric osteotomy. J Orthop Trauma. 2014;28(7):410–6.

    Google Scholar 

  105. Gadegone WM, Ramteke AA, Lokhande V, Salphade Y. Valgus intertrochanteric osteotomy and fibular strut graft in the management of neglected femoral neck fracture. Injury. 2013;44(6):763–8.

    Article  PubMed  Google Scholar 

  106. Said GZ, Farouk O, Said HG. Valgus intertrochanteric osteotomy with single-angled 130 degrees plate fixation for fractures and non-unions of the femoral neck. Int Orthop. 2010;34(8):1291–5.

    Article  PubMed  Google Scholar 

  107. Poss R. The intertrochanteric osteotomy. In: Sledge CB, editor. The hip: techniques in orthopaedic surgery. Philadelphia: Lippincott-Raven; 1998. p. 183–96.

    Google Scholar 

  108. Maistrelli GL, Gerundini M, Fusco U, Bombelli R, Bombelli M, Avai A. Valgus-extension osteotomy for osteoarthritis of the hip. Indications and long-term results. J Bone Joint Surg (Br). 1990;72(4):653–7.

    Article  CAS  Google Scholar 

  109. Kawate K, Tanaka Y, Ohmura T, Hiyoshi N, Yajima H, Tomita Y, et al. Twenty-five years followup of patients who had valgus osteotomy for arthritic hips. Clin Orthop. 2004;426:151–8.

    Article  Google Scholar 

  110. Bartonicek J, Vavra J. Valgus intertrochanteric osteotomy for coxa vara of Bucholz-Ogden Types II and III in patients older than 30 years. Arch Orthop Trauma Surg. 2011;131(9):1211–7.

    Article  PubMed  Google Scholar 

  111. Rao JP, Francis AM, Siwek CW. The treatment of chronic slipped capital femoral epiphysis by biplane osteotomy. J Bone Joint Surg Am. 1984;66(8):1169–75.

    Article  CAS  PubMed  Google Scholar 

  112. Maussen JP, Rozing PM, Obermann WR. Intertrochanteric corrective osteotomy in slipped capital femoral epiphysis. A long-term follow-up study of 26 patients. Clin Orthop. 1990;259:100–10.

    Google Scholar 

  113. Kartenbender K, Cordier W, Katthagen BD. Long-term follow-up study after corrective Imhauser osteotomy for severe slipped capital femoral epiphysis. J Pediatr Orthop. 2000;20(6):749–56.

    Article  CAS  PubMed  Google Scholar 

  114. Witbreuk MM, Bolkenbaas M, Mullender MG, Sierevelt IN, Besselaar PP. The results of downgrading moderate and severe slipped capital femoral epiphysis by an early Imhauser femur osteotomy. J Child Orthop. 2009;3(5):405–10.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Khan AQ, Khan MS, Sherwani MK, Agarwal R. Role of valgus osteotomy and fixation with dynamic hip screw and 120 degrees double angle barrel plate in the management of neglected and ununited femoral neck fracture in young patients. J Orthop Traumatol. 2009;10(2):71–8.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Rosemeyer B, Viernstein K, Schumann HJ. Follow up study of intertrochanteric valgus osteotomy with medial displacement in cases of primary protrusio acetabuly (author’s transl). Arch Orthop Unfallchir. 1973;77(2):138–48.

    Article  CAS  PubMed  Google Scholar 

  117. McBride MT, Muldoon MP, Santore RF, Trousdale RT, Wenger DR. Protrusio acetabuli: diagnosis and treatment. J Am Acad Orthop Surg. 2001;9(2):79–88.

    Article  CAS  PubMed  Google Scholar 

  118. Ohsawa S. Long-term results of valgus osteotomy for terminal-stage osteoarthritis of the hip. Arch Orthop Trauma Surg. 2017;137(1):19–26.

    Article  PubMed  Google Scholar 

  119. Takasaki S, Uchiyama K, Takahira N, Itoman M. Results and prognostic factors of valgus osteotomy in middle-aged patients with advanced or terminal osteoarthritis of the hip. J Orthop Sci. 2010;15(1):20–9.

    Article  PubMed  Google Scholar 

  120. Uchiyama K, Moriya M, Fukushima K, Yamamoto T, Takahira N, Takaso M. Clinical results and prognostic factors for outcomes of valgus femoral osteotomy combined with chiari pelvic osteotomy for osteoarthritis of the hip. JB JS Open Access. 2017;2(2):e0006.

    Article  PubMed  PubMed Central  Google Scholar 

  121. McKibbin B. Anatomical factors in the stability of the hip joint in the newborn. J Bone Joint Surg Br. 1970;52(1):148–59.

    Article  CAS  PubMed  Google Scholar 

  122. Maruyama M, Feinberg JR, Capello WN, D'Antonio JA. The Frank Stinchfield Award: Morphologic features of the acetabulum and femur: anteversion angle and implant positioning. Clin Orthop Relat Res. 2001;393:52–65.

    Article  Google Scholar 

  123. Reikeras O, Bjerkreim I, Kolbenstvedt A. Anteversion of the acetabulum and femoral neck in normals and in patients with osteoarthritis of the hip. Acta Orthop Scand. 1983;54(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  124. Jamali AA, Mladenov K, Meyer DC, Martinez A, Beck M, Ganz R, et al. Anteroposterior pelvic radiographs to assess acetabular retroversion: high validity of the “cross-over-sign”. J Orthop Res. 2007;25(6):758–65.

    Article  PubMed  Google Scholar 

  125. Ganz R, Gill TJ, Gautier E, Ganz K, Krugel N, Berlemann U. Surgical dislocation of the adult hip a technique with full access to the femoral head and acetabulum without the risk of avascular necrosis. J Bone Joint Surg Br. 2001;83(8):1119–24.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Leon Buly .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Buly, R.L. (2021). Femoral Deformities: Varus, Valgus, Retroversion, and Anteversion. In: Nho, S.J., Asheesh, B., Salata, M.J., Mather III, R.C., Kelly, B.T. (eds) Hip Arthroscopy and Hip Joint Preservation Surgery. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7321-3_52-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7321-3_52-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7321-3

  • Online ISBN: 978-1-4614-7321-3

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Femoral Deformities: Varus, Valgus, Retroversion, and Anteversion
    Published:
    02 September 2021

    DOI: https://doi.org/10.1007/978-1-4614-7321-3_52-2

  2. Original

    Femoral Deformities: Valgus, Varus, Retroversion, and Anteversion
    Published:
    27 June 2014

    DOI: https://doi.org/10.1007/978-1-4614-7321-3_52-1