Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Color Vision, Computational Methods for

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7320-6_8-3

Synonyms

Definition

The study of color vision has been aided by a whole battery of computational methods that attempt to describe the mechanisms that lead to our perception of colors in terms of the information-processing properties of the visual system. Their scope is highly interdisciplinary, linking apparently dissimilar disciplines such as mathematics, physics, computer science, neuroscience, cognitive science, and psychology. Since the sensation of color is a feature of our brains, computational approaches usually include biological features of neural systems in their descriptions, from retinal light-receptor interaction to subcortical color opponency, cortical signal decoding, and color categorization. They produce hypotheses that are usually tested by behavioral or psychophysical experiments.

Detailed Description

Although the sensation of hue is an invention of our brains, it nevertheless allows us to identify...

Keywords

Retina Pyramid Photography Valois Achromatopsia 
This is a preview of subscription content, log in to check access

References

  1. Barnard K, Funt B (2002) Camera characterization for color research. Color Res Appl 27:153–164Google Scholar
  2. Boynton RM (1986) A system of photometry and colorimetry based on cone excitations. Color Res Appl 11:244–252CrossRefGoogle Scholar
  3. Brainard DH (2004) Color constancy. In: Chalupa LM, Werner JS (eds) The visual neurosciences. MIT Press, Cambridge, MA, pp 948–961Google Scholar
  4. Cheung V, Westland S, Connah D, Ripamonti C (2004) A comparative study of the characterisation of colour cameras by means of neural networks and polynomial transforms. Color Technol 120:19–25CrossRefGoogle Scholar
  5. De Valois R (2004) Neural coding of color. In: Werner JS, Chalupa LM (eds) The visual neurosciences. MIT Press, Cambridge, MA, p 1001Google Scholar
  6. De Valois RL, De Valois KK (1988) Spatial vision. Oxford University Press, New YorkGoogle Scholar
  7. Derrington AM, Krauskopf J, Lennie P (1984) Chromatic mechanisms in lateral geniculate-nucleus of macaque. J Physiol 357:241–265PubMedPubMedCentralGoogle Scholar
  8. Fairchild MD (1998) Color appearance models. Addison-Wesley, Reading/HarlowGoogle Scholar
  9. Gevers T (2012) Color in computer vision: fundamentals and applications. Wiley, HobokenCrossRefGoogle Scholar
  10. Green P, MacDonald L (2002) Colour engineering: achieving device independent colour. Wiley, ChichesterGoogle Scholar
  11. Gregory RL (1998) Seeing colours. In: Eye and brain: the psychology of seeing. Oxford University Press, Oxford, pp 121–134Google Scholar
  12. Heeger DJ (1992) Normalization of cell responses in cat striate cortex. Vis Neurosci 9:181–197PubMedCrossRefGoogle Scholar
  13. Helmholtz HV (1867) Handbuch f physiologischen Optik. Voss, LeipzigGoogle Scholar
  14. Hering E (1875) Zur Lehre vom Lichtsinne. Sechs Mittheilungen an die Kaiserl. Akademie der Wissenschaften in Wien, 2nd edn. Gerold, WienGoogle Scholar
  15. Hurlbert A (2003) Colour vision: primary visual cortex shows its influence. Curr Biol 13:R270–R272PubMedCrossRefGoogle Scholar
  16. Judd DB (1951) Report of U.S. secretariat committee on colorimetry and artificial daylight. In: Twelfth session of the CIE. Bureau Central de la CIE, Stockholm, p 11Google Scholar
  17. MacLeod DIA, Boynton RM (1979) Chromaticity diagram showing cone excitation by stimuli of equal luminance. J Opt Soc Am 69:1183–1187PubMedCrossRefGoogle Scholar
  18. Murray N, Vanrell M, Otazu X, Parraga CA (2011) Saliency estimation using a non-parametric low-level vision model. In: Computer vision and pattern recognition (CVPR), 2011 I.E. conference on, pp 433–440Google Scholar
  19. Otazu X, Parraga CA, Vanrell M (2010) Towards a unified model for chromatic induction. J Vis 10(5):1–24CrossRefGoogle Scholar
  20. Parraga CA, Troscianko T, Tolhurst DJ (2002) Spatiochromatic properties of natural images and human vision. Curr Biol 12:483–487PubMedCrossRefGoogle Scholar
  21. Parraga CA, Baldrich R, Vanrell M (2010) Accurate mapping of natural scenes radiance to cone activation space: a new image dataset. In: CGIV 2010/MCS’10 – 5th European conference on colour in graphics, imaging, and vision – 12th international symposium on multispectral colour science. Society for Imaging Science and Technology, Joensuu, pp 50–57Google Scholar
  22. Poynton CA (2003) Digital video and HDTV: algorithms and interfaces. Morgan Kaufmann, Amsterdam/ BostonGoogle Scholar
  23. Shapley R, Hawken MJ (2011) Color in the cortex: single- and double-opponent cells. Vision Res 51:701–717PubMedCrossRefPubMedCentralGoogle Scholar
  24. Singer B, D’Zmura M (1995) Contrast gain control: a bilinear model for chromatic selectivity. J Opt Soc Am A Opt Image Sci Vis 12:667–685PubMedCrossRefGoogle Scholar
  25. Smith VC, Pokorny J (1975) Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res 15:161–171PubMedCrossRefGoogle Scholar
  26. Spitzer H, Barkan Y (2005) Computational adaptation model and its predictions for color induction of first and second orders. Vision Res 45:3323–3342PubMedCrossRefGoogle Scholar
  27. Stockman A, Brainard DH (2010) Color vision mechanisms. In: Bass M, Mahajan VN (eds) OSA handbook of optics. McGraw-Hill, New York, pp 11.11–11.104Google Scholar
  28. Stockman A, Sharpe LT (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40:1711–1737PubMedCrossRefGoogle Scholar
  29. Westland S, Ripamonti C (2004) Characterization of cameras. In: Computational colour science: using MATLAB. Wiley, Chichester, pp 127–128Google Scholar
  30. Wyszecki G, Stiles WS (1982a) Theories and models of color vision. In: Color science: concepts and methods, quantitative data and formulae. Wiley, New York/Chichester, p 615Google Scholar
  31. Wyszecki G, Stiles WS (1982b) Colorimetry. In: Color science: concepts and methods, quantitative data and formulae. Wiley, New York/Chichester, pp 117–145Google Scholar
  32. Young T (1802) On the theory of light and colours. Philos Trans R Soc Lond 92:12–48CrossRefGoogle Scholar
  33. Zeki S (1993) A vision of the brain. Blackwell, Oxford/BostonGoogle Scholar
  34. Zhang J, Barhomi Y, Serre T (2012) A new biologically inspired color image descriptor. In: Fitzgibbon AW, Lazebnik S, Perona P, Sato Y, Schmid C (eds) ECCV 2012 – 12th European conference on computer vision, 7–13 Oct 2012. Springer, Florence, pp 312–324Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Computer Vision Centre/Computer Science DepartmentUniversitat Autònoma de BarcelonaBarcelonaSpain