Skip to main content

Application of Declarative Programming in Neurobiology

Encyclopedia of Computational Neuroscience
  • 73 Accesses

Definition

The main technique in computational neuroscience is imperative programming, which is often used to implement simulations of dynamics, and describes how a computation is performed. A complement to this approach is declarative programming. Declarations provide descriptions of relationships between elements, effectively describing what the computation should accomplish. The use of declarative programming for modeling biological processes is still in its infancy (Fisher and Henzinger 2007) yet has shown itself to be a valuable first step for analysis of the seemingly impenetrable complexity of molecular interactomics: the interplay of the myriad proteins and signaling species in the cell. Declarative programming can also be used at the connectomic level of understanding connections among neurons or among brain areas.

Detailed Description

Declarative Programming

The declarationsof a declarative program describe the relationships between system elements. Because of this...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anastasio TJ (2011) Data-driven modeling of Alzheimer disease pathogenesis. J Theor Biol 290:60–72

    Article  Google Scholar 

  • Anastasio TJ (2013a) Exploring the contribution of estrogen to amyloid-beta regulation: a novel multifactorial computational modeling approach. Front Pharmacol 4:16

    Article  CAS  Google Scholar 

  • Anastasio TJ (2013b) Computational search for hypotheses concerning the endocannabinoid contribution to the extinction of fear conditioning. Front Comput Neurosci 7:74

    Article  Google Scholar 

  • Anastasio TJ (2014a) Computational identification of potential multitarget treatments for ameliorating the adverse effects of amyloid-beta on synaptic plasticity. Front Pharmacol 5:1

    Article  CAS  Google Scholar 

  • Anastasio TJ (2014b) Temporal-logic analysis of microglial phenotypic conversion with exposure to amyloid-β. Mol Bio Syst 11:434–453

    Google Scholar 

  • Anastasio TJ (2015) Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease. Front Pharmacol 6:116

    Article  Google Scholar 

  • Camacho MB, Anastasio TJ (2017) Computational model of antidepressant response heterogeneity as multi-pathway neuroadaptation. Front Pharmacol 8:925

    Article  Google Scholar 

  • Cardone F, Hindley JR (2006) History of Lambda-calculus and combinatory logic. In: Gabbay DM, Woods J (eds) Handbook of the history of logic. Elsevier, Amsterdam

    Google Scholar 

  • Clavel M, Durán R, Eker S, Lincoln P, Martí-Oliet N, Meseguer J, Talcott C (2007) All about Maude: a high-performance logical framework: how to specify, program, and verify systems in rewriting logic. Springer, Berlin

    Google Scholar 

  • Dave JR, Williams AJ, Moffett JR, Koenig ML, Tortella FC (2003) Studies on neuronal apoptosis in primary forebrain cultures: neuroprotective/anti-apoptotic action of NR2B NMDA antagonists. Neurotox Res 5(4):255–264

    Article  Google Scholar 

  • de la Torre JC (2009) Cerebrovascular and cardiovascular pathology in Alzheimer’s disease. Int Rev Neurobiol 84:35–48

    Article  Google Scholar 

  • Eker S, Knapp M, Laderoute K, Lincoln P, Meseguer J, Sonmez K (2002) Pathway logic: symbolic analysis of biological signaling. Pac Symp Biocomput 2002:400–412

    Google Scholar 

  • Fisher J, Henzinger TA (2007) Executable cell biology. Nat Biotechnol 25(11):1239–1249

    Article  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  Google Scholar 

  • Huth M, Ryan M (2004) Logic in computer science: modelling and reasoning about systems. Cambridge University Press, Cambridge, MA

    Book  Google Scholar 

  • Kain RY (1972) Automata theory: machines and languages. McGraw-Hill, New York

    Google Scholar 

  • Meseguer J (2012) Twenty years of rewriting logic. J Log Alg Prog 81(7–8):721–781

    Article  Google Scholar 

  • Oda S, Oda T, Takabuchi S, Nishi K, Wakamatsu T, Tanaka T, Adachi T, Fukuda K, Nohara R, Hirota K (2009) The calcium channel blocker cilnidipine selectively suppresses hypoxia-inducible factor 1 activity in vascular cells. Eur J Pharmacol 606(1–3):130–136

    Article  CAS  Google Scholar 

  • Sastre M, Dewachter I, Rossner S, Bogdanovic N, Rosen E, Borghgraef P, Evert BO, Dumitrescu-Ozimek L, Thal DR, Landreth G, Walter J, Klockgether T, van Leuven F, Heneka MT (2006) Nonsteroidal anti-inflammatory drugs repress beta-secretase gene promoter activity by the activation of PPARgamma. Proc Natl Acad Sci USA 103(2):443–448

    Article  CAS  Google Scholar 

  • Scheibel AB, Duong TH, Jacobs R (1989) Alzheimer’s disease as a capillary dementia. Ann Med 21(2):103–107

    Article  CAS  Google Scholar 

  • Tabe-Bordbar S, Anastasio TJ (2016) Computational analysis of the hypothalamic control of food intake. Front Comput Neurosci 10:27

    Article  Google Scholar 

  • Talcott C (2008) Pathway logic. In: Bernardo M, Degano P, Zavattaro G (eds) Lecture notes in computer science. Springer, Berlin, pp 21–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Anastasio .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Anastasio, T.J. (2018). Application of Declarative Programming in Neurobiology. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_749-8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_749-8

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Application of Declarative Programming in Neurobiology
    Published:
    25 May 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_749-8

  2. Original

    Application of Declarative Programming in Neurobiology
    Published:
    19 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_749-7