Skip to main content

Local Field Potential, Relationship to Membrane Synaptic Potentials

Encyclopedia of Computational Neuroscience

Definition

The relationship between the somatic membrane potential of an individual neuron and the local field potential signals, assessed by cross-correlation, coherence, or related statistical analysis methods. Typically, correlation between these two signals exists due to synaptic inputs shared by the individual neuron and the entire neuronal population.

Detailed Description

Introduction

The membrane potential (Vm) of neurons is shaped by transmembrane flow of ions, which can have both synaptic and intrinsic origins. A net flow of current across the membrane, in addition to the change in Vm, produces a small change in the potential of the extracellular medium outside the cell that can be picked up by an extracellular microelectrode. The low-frequency (<300 Hz) component of this signal, known as the extracellular local field potential (LFP), is produced by transmembrane currents flowing simultaneously in thousands of neuron and glial cells, superimposed according to the complex...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Atallah BV, Scanziani M (2009) Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 62:566–577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ayzenshtat I, Meirovithz E, Edelman H, Werner-Reiss U, Bienenstock E, Abeles M, Slovin H (2010) Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing. J Neurosci 30:11232–11245

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents – EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  PubMed  Google Scholar 

  • Chorev E, Brecht M (2012) In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons. J Neurophysiol 108:1584–1593

    Article  PubMed  Google Scholar 

  • Creutzfeldt OD, Lux HD, Nacimiento AC (1964) Intracelluläre Reizung corticaler Nervenzellen. Pflügers Arch Für Gesamte Physiol Menschen Tiere 281:129–151

    Article  CAS  Google Scholar 

  • Creutzfeldt OD, Watanabe S, Lux HD (1966) Relations between EEG phenomena and potentials of single cortical cells. II. Spontaneous and convulsoid activity. Electroencephalogr Clin Neurophysiol 20:19–37

    Article  CAS  PubMed  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    CAS  PubMed  Google Scholar 

  • Destexhe A, Hughes SW, Rudolph M, Crunelli V (2007) Are corticothalamic “up” states fragments of wakefulness? Trends Neurosci 30:334–342

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Deweese MR, Zador AM (2004) Shared and private variability in the auditory cortex. J Neurophysiol 92:1840–1855

    Article  PubMed  Google Scholar 

  • Ferezou I, Haiss F, Gentet LJ, Aronoff R, Weber B, Petersen CCH (2007) Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron 56:907–923

    Article  CAS  PubMed  Google Scholar 

  • Gold C, Henze DA, Koch C, Buzsáki G (2006) On the origin of the extracellular action potential waveform: a modeling study. J Neurophysiol 95:3113–3128

    Article  CAS  PubMed  Google Scholar 

  • Hahn TTG, Sakmann B, Mehta MR (2006) Phase-locking of hippocampal interneurons’ membrane potential to neocortical up-down states. Nat Neurosci 9:1359–1361

    Article  CAS  PubMed  Google Scholar 

  • Hahn TTG, McFarland JM, Berberich S, Sakmann B, Mehta MR (2012) Spontaneous persistent activity in entorhinal cortex modulates cortico-hippocampal interaction in vivo. Nat Neurosci 15:1531–1538

    Article  CAS  PubMed  Google Scholar 

  • Haider B, Duque A, Hasenstaub AR, McCormick DA (2006) Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J Neurosci Off J Soc Neurosci 26:4535–4545

    Article  CAS  Google Scholar 

  • Harris KD, Henze DA, Csicsvari J, Hirase H, Buzsáki G (2000) Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol 84:401–414

    CAS  PubMed  Google Scholar 

  • Hasenstaub A, Shu Y, Haider B, Kraushaar U, Duque A, McCormick DA (2005) Inhibitory postsynaptic potentials carry synchronized frequency information in active cortical networks. Neuron 47:423–435

    Article  CAS  PubMed  Google Scholar 

  • Heiss JE, Katz Y, Ganmor E, Lampl I (2008) Shift in the balance between excitation and inhibition during sensory adaptation of S1 neurons. J Neurosci 28:13320–13330

    Article  CAS  PubMed  Google Scholar 

  • Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris K, Buzsáki G (2000) Intracellular features predicted by extracellular in the hippocampus in vivo. J Neurophysiol 84:390–400

    CAS  PubMed  Google Scholar 

  • Hirata A, Castro-Alamancos MA (2010) Neocortex network activation and deactivation states controlled by the thalamus. J Neurophysiol 103:1147–1157

    Article  PubMed Central  PubMed  Google Scholar 

  • Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K, Henze DA, Buzsáki G (2006) Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52:871–882

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31:277–287

    Article  PubMed  Google Scholar 

  • Klee MR, Offenloch K, Tigges J (1965) Cross-correlation analysis of electroencephalographic potentials and slow membrane transients. Science 147:519–521

    Article  CAS  PubMed  Google Scholar 

  • Lampl I, Reichova I, Ferster D (1999) Synchronous membrane potential fluctuations in neurons of the cat visual cortex. Neuron 22:361–374

    Article  CAS  PubMed  Google Scholar 

  • Lindén H, Pettersen KH, Einevoll GT (2010) Intrinsic dendritic filtering gives low-pass power spectra of local field potentials. J Comput Neurosci 29:423–444

    Article  PubMed  Google Scholar 

  • Malina KC-K, Jubran M, Katz Y, Lampl I (2013) Imbalance between excitation and inhibition in the somatosensory cortex produces postadaptation facilitation. J Neurosci 33:8463–8471

    Article  CAS  Google Scholar 

  • Mukovski M, Chauvette S, Timofeev I, Volgushev M (2007) Detection of active and silent states in neocortical neurons from the field potential signal during slow-wave sleep. Cereb Cortex 17:400–414

    Article  PubMed  Google Scholar 

  • Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535–537

    Article  CAS  PubMed  Google Scholar 

  • Okun M, Naim A, Lampl I (2010) The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 30:4440–4448

    Article  CAS  PubMed  Google Scholar 

  • Poulet JFA, Petersen CCH (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885

    Article  CAS  PubMed  Google Scholar 

  • Quilichini P, Sirota A, Buzsáki G (2010) Intrinsic circuit organization and theta–gamma oscillation dynamics in the entorhinal cortex of the rat. J Neurosci 30:11128–11142

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rigas P, Castro-Alamancos MA (2007) Thalamocortical up states: differential effects of intrinsic and extrinsic cortical inputs on persistent activity. J Neurosci 27:4261–4272

    Article  CAS  PubMed  Google Scholar 

  • Saleem AB, Chadderton P, Apergis-Schoute J, Harris KD, Schultz SR (2010) Methods for predicting cortical UP and DOWN states from the phase of deep layer local field potentials. J Comput Neurosci 29:49–62

    Article  PubMed Central  PubMed  Google Scholar 

  • Sun Q-Q, Huguenard JR, Prince DA (2006) Barrel cortex microcircuits: thalamocortical feedforward inhibition in spiny stellate cells is mediated by a small number of fast-spiking interneurons. J Neurosci 26:1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Volgushev M, Chauvette S, Timofeev I (2011) Long-range correlation of the membrane potential in neocortical neurons during slow oscillation. Prog Brain Res 193:181–199

    Article  PubMed Central  PubMed  Google Scholar 

  • Wehr M, Pezaris JS, Sahani M (1999) Simultaneous paired intracellular and tetrode recordings for evaluating the performance of spike sorting algorithms. Neurocomputing 26–27:1061–1068

    Article  Google Scholar 

  • Yoshimura Y, Callaway EM (2005) Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat Neurosci 8:1552–1559

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryeh H. Taub .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Taub, A.H., Lampl, I., Okun, M. (2014). Local Field Potential, Relationship to Membrane Synaptic Potentials. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_728-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_728-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Local Field Potential: Relationship to Membrane Synaptic Potentials
    Published:
    18 June 2019

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_728-2

  2. Original

    Local Field Potential, Relationship to Membrane Synaptic Potentials
    Published:
    14 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_728-1