Skip to main content

Local Field Potential, Relationship to Unit Activity

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Contamination by spikes; Electroencephalogram; Local field potential; Relation to unit activity; Spike contribution; Spike-triggered average

Definition

Unit activity usually refers to timing of spikes elicited by individual neurons (single unit activity, SUA) or local (r < 140 μm) population of neurons (multi-unit activity, MUA; Buzsáki 2004). Although local field potential (LFP) reflects both subthreshold and spiking activities that are summed over larger population of neurons (r < 450 μm, Berens et al. 2008), usually it does not display discriminable spikes. Nevertheless, the amplitude of high-frequency LFP (>40 Hz) often correlates with population firing rate, whereas the phase and amplitude of low-frequency LFP (<10 Hz) modulates this relationship. The LFP-spike relation is very sensitive to neuronal correlations – at high synchrony levels neurons produce macroscopic spikes visible in the raw LFP signal (“population spikes”).

Detailed Description

The basic physical...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andersen P, Bliss T, Skrede K (1971) Unit analysis of hippocampal polulation spikes. Exp Brain Res 13(2):208–221

    CAS  PubMed  Google Scholar 

  • Baker S, Curio G, Lemon R (2003) EEG oscillations at 600 Hz are macroscopic markers for cortical spike bursts. J Physiol 550:529–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazelot M, Dinocourt C, Cohen I, Miles R (2010) Unitary inhibitory field potentials in the CA3 region of rat hippocampus. J Physiol (Lond) 588:2077–2090

    Article  CAS  Google Scholar 

  • Bedard C, Destexhe A (2013) Reply to Gratiy et al. J Neurophysiol 109:1683

    Article  PubMed  Google Scholar 

  • Bédard C, Kröger H, Destexhe A (2004) Modeling extracellular field potentials and the frequency-filtering properties of extracellular space. Biophys J 86:1829–1842

    Article  PubMed  PubMed Central  Google Scholar 

  • Belitski A, Gretton A, Magri C, Murayama Y, Montemurro MA, Logothetis NK, Panzeri S (2008) Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J Neurosci 28:5696–5709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belluscio MA, Mizuseki K, Schmidt R, Kempter R, Buzsáki G (2012) Cross-frequency phasephase coupling between θ and γ oscillations in the hippocampus. J Neurosci 32:423–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berens P, Keliris GA, Ecker AS, Logothetis NK, Tolias AS (2008) Comparing the feature selectivity of the gamma-band of the local field potential and the underlying spiking activity in primate visual cortex. Front Syst Neurosci 2:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Burns SP, Xing D, Shapley RM (2010) Comparisons of the dynamics of local field potential and multiunit activity signals in macaque visual cortex. J Neurosci 30:13739–13749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buzsáki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci 7:446–451

    Article  PubMed  Google Scholar 

  • Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420

    Article  PubMed  PubMed Central  Google Scholar 

  • Denker M, Roux S, Lindén H, Diesmann M, Riehle A, Grün S (2011) The local field potential reflects surplus spike synchrony. Cereb Cortex 21:2681–2695

    Article  PubMed  PubMed Central  Google Scholar 

  • Destexhe A (1998) Spike-and-wave oscillations based on the properties of GABAB receptors. J Neurosci 18:9099–9111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Destexhe A, Bedard C (2012) Do neurons generate monopolar current sources? J Neurophysiol 108:953–955

    Article  PubMed  Google Scholar 

  • Destexhe A, Contreras D, Steriade M (1999) Spatiotemporal analysis of local field potentials and unit discharges in cat cerebral cortex during natural wake and sleep states. J Neurosci 19:4595–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gratiy SL, Pettersen KH, Einevoll GT, Dale AM (2013) Pitfalls in the interpretation of multielectrode data: on the infeasibility of the neuronal current-source monopoles. J Neurophysiol 109:1681–1682

    Article  PubMed  PubMed Central  Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci U S A 86:1698–1702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewett DL, Deupree DL, Bommannan D (1990) Far-field potentials generated by action potentials of isolated frog sciatic nerves in a spherical volume. Electroencephalogr Clin Neurophysiol 75:105–117

    Article  CAS  PubMed  Google Scholar 

  • Jones MS, MacDonald KD, Choi B, Dudek FE, Barth DS (2000) Intracellular correlates of fast (>200 Hz) electrical oscillations in rat somatosensory cortex. J Neurophysiol 24:1505–1518

    Article  Google Scholar 

  • Kuokkanen PT, Wagner H, Ashida G, Carr CE, Kempter R (2010) On the origin of the extracellular field potential in the nucleus Laminaris of the barn owl (Tyto alba). J Neurophysiol 104:2274–2290

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CT, Poo MM, Dan Y (2009) Burst spiking of a single cortical neuron modifies global brain state. Science 324:643–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazzoni A, Whittingstall K, Brunel N, Logothetis NK, Panzeri S (2010) Understanding the relationships between spike rate and delta/gamma frequency bands of LFPs and EEGs using a local cortical network model. NeuroImage 52:956–972

    Article  PubMed  Google Scholar 

  • Murakami S, Okada Y (2006) Contributions of principal neocortical neurons to magnetoencephalography and electroencephalography signals. J Physiol 575:925–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami S, Hirose A, Okada YC (2003) Contribution of ionic currents to magnetoencephalography (MEG) and electroencephalography (EEG) signals generated by Guinea-pig CA3 slices. J Physiol Lond 553:975–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nauhaus I, Busse L, Carandini M, Ringach DL (2009) Stimulus contrast modulates functional connectivity in visual cortex. Nat Neurosci 12:70–76

    Article  CAS  PubMed  Google Scholar 

  • Nelson MJ, Bosch C, Venance L, Pouget P (2013) Microscale inhomogeneity of brain tissue distorts electrical signal propagation. J Neurosci 33:2821–2827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okun M, Naim A, Lampl I (2010) The subthreshold relation between cortical local field potential and neuronal firing unveiled by intracellular recordings in awake rats. J Neurosci 34:4440–4448

    Article  Google Scholar 

  • Rasch MJ, Gretton A, Murayama Y, Maass W, Logothetis NK (2008) Inferring spike trains from local field potentials. J Neurophysiol 99:1461–1476

    Article  PubMed  Google Scholar 

  • Ray S, Crone NE, Niebur E, Franaszczuk PJ, Hsiao SS (2008) Neural correlates of high-gamma oscillations (60–200 Hz) in Macaque local field potentials and their potential implications in electrocorticography. J Neurosci 28:11526–11536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimann MW, Anastassiou CA, Perin R, Hill SL, Markram H, Koch C (2013) A biophysically detailed model of neocortical local field potentials predicts the critical role of active membrane currents. Neuron 79:375–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riera JJ, Ogawa T, Goto T, Sumiyoshi A, Nonaka H, Evans A, Miyakawa H, Kawashima R (2012) Pitfalls in the dipolar model for the neocortical EEG sources. J Neurophysiol 42:956–975

    Article  Google Scholar 

  • Telenczuk B, Baker SN, Herz AVM, Curio G (2011) High-frequency EEG covaries with spike burst patterns detected in cortical neurons. J Neurophysiol 105:2951–2959

    Article  PubMed  PubMed Central  Google Scholar 

  • Telenczuk B, Dehghani N, Le Van Quyen M, Cash S, Halgren E, Hatsopoulos NG, Destexhe A (2017a) Local field potentials primarily reflect inhibitory neuron activity in human and monkey cortex. Sci Reports 7:40211

    CAS  Google Scholar 

  • Telenczuk B, Kempter R, Curio G, Destexhe A (2017b) Refractoriness accounts for variable spike burst responses in somatosensory cortex. eNeuro 4:0173–0117

    Article  Google Scholar 

  • Telenczuk M, Telenczu B, Destexhe A (2020a) Modeling unitary fields and the single neuron contribution to local field potentials in the hippocampus. J. Physiol. 598:3957–3972

    Google Scholar 

  • Telenczuk B, Telenczuk M, Destexhe A (2020b) A kernel-based method to calculate local field potentials from networks of spiking neurons. J Neurosci Methods 344:108871

    Google Scholar 

  • Whittingstall K, Logothetis NK (2009) Frequency-band coupling in surface EEG reflects spiking activity in monkey visual cortex. Neuron 64:281–289

    Article  CAS  PubMed  Google Scholar 

  • Zanos TP, Mineault PJ, Pack CC (2011) Removal of spurious correlations between spikes and local field potentials. J Neurophysiol 105:474–486

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Telenczuk .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Telenczuk, B., Destexhe, A. (2020). Local Field Potential, Relationship to Unit Activity. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_543-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_543-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Local Field Potential, Relationship to Unit Activity
    Published:
    10 November 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_543-2

  2. Original

    Local Field Potential, Relationship to Unit Activity
    Published:
    13 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_543-1