Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Amari Model

  • Roland Potthast
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7320-6_51-2


The Amari neural field model (cf. (Amari 1975, 1977)) provides a simple field-theoretic approach to the dynamics of neural activity in the brain. The model uses excitations and inhibitions over some distance as an effective model of mixed inhibitory and excitatory neurons with typical cortical connectivities. The model is a scalar dynamical equation for the voltage or activity u( x, t) of the form
$$ \frac{\partial u}{\partial t}\;\left(x,t\right)=-u\left(x,t\right)+{\displaystyle {\int}_Bw\left(x,y\right)\;f\left(u\left(y,t\right)\right) dy,\kern0.48em x\in B,t\ge 0,} $$


Connectivity Function Neural Field Homogeneous Kernel Dynamic Causal Modeling Neural Field Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Amari S (1975) Homogeneous nets of neuron-like elements. Biol Cybern 17:211–220PubMedCrossRefGoogle Scholar
  2. Amari S (1977) Dynamics of pattesrn formation in lateral-inhibition type neural fields. Biol Cybern 27:77–87PubMedCrossRefGoogle Scholar
  3. beim Graben P, Potthast R (2009) Inverse problems in dynamic cognitive modeling. Chaos 19(1):015103PubMedCrossRefGoogle Scholar
  4. beim Graben P, Potthast R (2012) A dynamic field account to language-related brain potentials. In: Rabinovich M, Friston K, Varona P (eds) Principles of brain dynamics: global state interactions. MIT Press, Cambridge, MAGoogle Scholar
  5. beim Graben P, Pinotsis D, Saddy D, Potthast R (2008) Language processing with dynamic fields. Cogn Neurodyn 2(2):79–88PubMedCrossRefPubMedCentralGoogle Scholar
  6. Beurle RL (1956) Properties of a mass of cells capable of regenerating pulses. Phil Trans R Soc Lond B 240:55–94CrossRefGoogle Scholar
  7. Brackley CA, Turner MS (2007) Random fluctuations of the firing rate function in a continuum neural field model. Phys Rev E 75:041913CrossRefGoogle Scholar
  8. Bressloff PC (2012) Spatiotemporal dynamics of continuum neural fields. J Phys A 45:033,001Google Scholar
  9. Bressloff PC, Coombes S (1997) Physics of the extended neuron. Int J Mod Phys B 11:2343–2392CrossRefGoogle Scholar
  10. Coombes S, Owen MR (2004) Evans functions for integral neural field equations with Heaviside firing rate function. SIAM J Appl Dyn Syst 34:574–600CrossRefGoogle Scholar
  11. Coombes S, Schmidt H (2010) Neural fields with sigmoidal firing rates: approximate solutions. Discret Contin Dyn Syst Ser A 28:1369–1379CrossRefGoogle Scholar
  12. Coombes S, Lord GJ, Owen MR (2003) Waves and bumps in neuronal networks with axo-dendritic synaptic interactions. Phys D 178:219–241CrossRefGoogle Scholar
  13. Coombes S, Schmidt H, Bojak I (2012) Interface dynamics in planar neural field models. J Math Neurosci 2:9PubMedCrossRefPubMedCentralGoogle Scholar
  14. Coombes S, beim Graben P, Potthast R et al (2013) Tutorial on neural field theory. In: Wright J, Potthast R, Coombes S, beim Graben P (eds) Neural fields. Theory and applications. Springer, BerlinGoogle Scholar
  15. Daunizeau J, Kiebel SJ, Friston KJ (2009) Dynamic causal modelling of distributed electromagnetic responses. Neuroimage 47:590–601PubMedCrossRefPubMedCentralGoogle Scholar
  16. Erlhagen W, Bicho E (2006) The dynamic neural field approach to cognitive robotics. J Neural Eng 3:R36–R54PubMedCrossRefGoogle Scholar
  17. Ermentrout GB, McLeod JB (1993) Existence and uniqueness of travelling waves for a neural network. Proc Roy Soc Edinb 123A:461–478CrossRefGoogle Scholar
  18. Faugeras O, Grimbert F, Slotine JJ (2008) Absolute stability and complete synchronization in a class of neural fields models. SIAM J Appl Math 69:205–250CrossRefGoogle Scholar
  19. Folias SE, Bressloff PC (2004) Breathing pulses in an excitatory neural network. SIAM J Appl Dyn Syst 3:378–407CrossRefGoogle Scholar
  20. Griffith JS (1963) A field theory of neural nets: I: derivation of field equations. Bull Math Biophys 25:111–120PubMedCrossRefGoogle Scholar
  21. Griffith JS (1965) A field theory of neural nets: II: properties of field equations. Bull Math Biophys 27:187–195PubMedCrossRefGoogle Scholar
  22. Grindrod P, Pinotsis D (2010) On the spectra of certain integro-differential-delay problems with applications in neurodynamics. Phys D Nonlinear Phenom 240(1):13–20. doi:10.1016/j.physd.2010.08.002, ISSN 0167–2789CrossRefGoogle Scholar
  23. Hutt A (2004) Effects of nonlocal feedback on traveling fronts in neural fields subject to transmission delay. Phys Rev E 60(1–4):052902CrossRefGoogle Scholar
  24. Jirsa VK, Haken H (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Phys D 99:503–526CrossRefGoogle Scholar
  25. Kilpatrick ZP, Bressloff PC (2010a) Effects of synaptic depression and adaptation on spatiotemporal dynamics of an excitatory neuronal network. Phys D 239:547–560CrossRefGoogle Scholar
  26. Kilpatrick ZP, Bressloff PC (2010b) Spatially structured oscillations in a two-dimensional excitatory neuronal network with synaptic depression. J Comput Neurosci 28:193–209PubMedCrossRefGoogle Scholar
  27. Kishimoto K, Amari S (1979) Existence and stability of local excitations in homogeneous neural fields. J Math Biol 7:303–318PubMedCrossRefGoogle Scholar
  28. Laing CR (2005) Spiral waves in nonlocal equations. SIAM J Appl Dyn Syst 4:588–606CrossRefGoogle Scholar
  29. Laing CR, Troy WC (2003a) PDE methods for nonlocal models. SIAM J Appl Dyn Syst 2:487–516CrossRefGoogle Scholar
  30. Laing CR, Troy WC (2003b) Two bump solutions of Amari-type models of working memory. Phys D 178:190–218CrossRefGoogle Scholar
  31. Nunez PL (1974) The brain wave equation: a model for the EEG. Math Biosci 21:279–297CrossRefGoogle Scholar
  32. Oleynik A, Posnov A, Wyller J (2013) On the properties of nonlinear nonlocal operators arising in neural field models. Journal of Mathematical Analysis and Applications 398:335–351Google Scholar
  33. Owen MR, Laing CR, Coombes S (2007) Bumps and rings in a two-dimensional neural field: splitting and rotational instabilities. New J Phys 9:378CrossRefGoogle Scholar
  34. Pinto DJ, Ermentrout GB (2001a) Spatially structured activity in synaptically coupled neuronal networks: I. Travelling fronts and pulses. SIAM J Appl Math 62:206–225CrossRefGoogle Scholar
  35. Pinto DJ, Ermentrout GB (2001b) Spatially structured activity in synaptically coupled neuronal networks: II. lateral inhibition and standing pulses. SIAM J Appl Math 62:226–243CrossRefGoogle Scholar
  36. Potthast R, beim Graben P (2009) Inverse problems in neural field theory. SIAM J Appl Dyn Syst 8(4):1405–1433CrossRefGoogle Scholar
  37. Potthast R, beim Graben P (2010) Existence and properties of solutions for neural field equations. Math Methods Appl Sci 33(8):935–949Google Scholar
  38. Schmidt H, Hutt A, Schimansky-Geier L (2009) Wave fronts in inhomogeneous neural field models. Phys D 238:1101–1112CrossRefGoogle Scholar
  39. Schöner G, Dineva E (2007) Dynamic instabilities as mechanisms for emergence. Dev Sci 10:69–74PubMedCrossRefGoogle Scholar
  40. Taylor JG (1999) Neural ‘bubble’ dynamics in two dimensions: foundations. Biol Cybern 80:393–409, StructureCrossRefGoogle Scholar
  41. Venkov NA, Coombes S, Matthews PC (2007) Dynamic instabilities in scalar neural field equations with space-dependent delays. Phys D 232:1–15CrossRefGoogle Scholar
  42. Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12:1–24PubMedCrossRefPubMedCentralGoogle Scholar
  43. Wilson HR, Cowan JD (1973) A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13:55–80PubMedCrossRefGoogle Scholar

Further Reading

  1. Ben-Yishai R, Bar-Or L, Sompolinsky H (1995) Theory of orientation tuning in visual cortex. Proc Natl Acad Sci U S A 92:3844–3848PubMedCrossRefPubMedCentralGoogle Scholar
  2. Berger H (1929) Über das Elektroenkephalogramm des Menschen. Archiv Psychiatr 87:527–570CrossRefGoogle Scholar
  3. Bressloff PC (2001) Traveling fronts and wave propagation failure in an in-homogeneous neural network. Phys D 155:83–100CrossRefGoogle Scholar
  4. Ermentrout GB, Cowan JD (1979) A mathematical theory of visual hallucination patterns. Biol Cybern 34:137–150PubMedCrossRefGoogle Scholar
  5. Geise MA (1999) Neural field theory for motion perception. Kluwer, BostonCrossRefGoogle Scholar
  6. Jirsa VKV, Jantzen KJ, Fuchs A, Kelso JAS (2001) Information processing in medical imaging, chap. Neural field dynamics on the folded three-dimensional cortical sheet and its forward EEG and MEG. Springer, Berlin, pp 286–299Google Scholar
  7. Jirsa VK, Jantzen KJ, Fuchs A, Kelso JAS (2002) Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Trans Med Imaging 21(5):493–504PubMedCrossRefGoogle Scholar
  8. Kilpatrick ZP, Bressloff PC (2010) Binocular rivalry in a competitive neural network with synaptic depression. SIAM J Appl Dyn Syst 9:1303–1347CrossRefGoogle Scholar
  9. Laing CR, Troy WC, Gutkin B, Ermentrout GB (2002) Multiple bumps in a neuronal model of working memory. SIAM J Appl Math 63:62–97CrossRefGoogle Scholar
  10. Liley DTJ, Cadusch PJ, Dafilis MP (2002) A spatially continuous mean field theory of electrocortical activity. Network 13:67–113PubMedCrossRefGoogle Scholar
  11. Liley DTJ, Foster BL, Bojak I (2011) Sleep and anesthesia, chap. A mesoscopic modelling approach to anaesthetic action on brain electrical activity. Springer, New York, pp 139–166Google Scholar
  12. Nunez PL (1995) Neocortical dynamics and human EEG rhythms. Oxford University Press, New YorkGoogle Scholar
  13. Rabinovich M, Friston K, Varona P (eds) (2012) Principles of brain dynamics: global state interactions. MIT Press, Cambridge, MAGoogle Scholar
  14. Tass P (1995) Cortical pattern formation during visual hallucinations. J Biol Phys 21:177–210CrossRefGoogle Scholar
  15. Bressloff PC, Cowan JD, Golubitsky M, Thomas PJ, Wiener M (2001) Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Phil Trans R Soc Lond B 40:299–330CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of ReadingReadingUK