Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Computational Psychiatry

  • Quentin Huys
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7320-6_501-2

Definition

Computational psychiatry is a heterogeneous field at the intersection of computational neuroscience and psychiatry. Incorporating methods from psychiatry, psychology, neuroscience, behavioral economics, and machine learning, computational psychiatry focuses on building mathematical models of neural or cognitive phenomena relevant to psychiatric diseases. The models span a wide range – from biologically detailed models of neurons or networks to abstract models describing high-level cognitive abilities of an organism. Psychiatric diseases are conceptualized either as an extreme of normal function or as a consequence of alterations in parts of the model.

As in computational neuroscience more generally, the building of models forces key concepts to be made concrete and hidden assumptions to be made explicit. One critical function of these models in the setting of psychiatry is their ability to bridge between low-level biological and high-level cognitive features. While many...

Keywords

Autistic Spectrum Disorder Borderline Personality Disorder Reinforcement Learning Psychiatric Disease Borderline Personality Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

Notes

Acknowledgments

I thank Dominik Bach, Kay H. Brodersen, Anthony Cruickshank, Peter Dayan, Marc Guitart-Masip, Helene Haker, Gregor Hasler, Falk Lieder, Tiago Maia, John Milton, Michael Moutoussis, Peggy Seriès, and Klaas Enno Stephan for informative comments and discussions on an earlier version of this contribution.

References

  1. Belin D, Everitt BJ (2008) Cocaine seeking habits depend upon dopamine-dependent serial connectivity linking the ventral with the dorsal striatum. Neuron 57(3):432–441PubMedCrossRefGoogle Scholar
  2. Boureau YL, Dayan P (2011) Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36(1):74–97PubMedCentralPubMedCrossRefGoogle Scholar
  3. Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46(3):312–328PubMedCrossRefGoogle Scholar
  4. Bylsma LM, Morris BH, Rottenberg J (2008) A meta-analysis of emotional reactivity in major depressive disorder. Clin Psychol Rev 28(4):676–691PubMedCrossRefGoogle Scholar
  5. Camerer CF (2003) Behavioral game theory: experiments in strategic interaction. Princeton University Press, PrincetonGoogle Scholar
  6. Chase HW, Frank MJ, Michael A, Bullmore ET, Sahakian BJ, Robbins TW (2010a) Approach and avoidance learning in patients with major depression and healthy controls: relation to anhedonia. Psychol Med 40(3):433–440PubMedCrossRefGoogle Scholar
  7. Chase HW, Michael A, Bullmore ET, Sahakian BJ, Robbins TW (2010b) Paradoxical enhancement of choice reaction time performance in patients with major depression. J Psychopharmacol 24(4):471–479PubMedCrossRefGoogle Scholar
  8. Chiu PH, Kayali MA, Kishida KT, Tomlin D, Klinger LG, Klinger MR, Montague PR (2008) Self responses along cingulate cortex reveal quantitative neural phenotype for high-functioning autism. Neuron 57(3):463–473PubMedCrossRefGoogle Scholar
  9. Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys QJM, Düzel E, Dolan RJ (2013) Dopamine restores reward prediction errors in older age. Nat Neurosci 16:648–653PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cohen JD, Braver TS, O’Reilly RC (1996) A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges. Philos Trans R Soc Lond B Biol Sci 351(1346):1515–1527PubMedCrossRefGoogle Scholar
  11. Corlett PR, Murray GK, Honey GD, Aitken MRF, Shanks DR, Robbins TW, Bullmore ET, Dickinson A, Fletcher PC (2007) Disrupted prediction-error signal in psychosis: evidence for an associative account of delusions. Brain 130(Pt 9):2387–2400PubMedCrossRefGoogle Scholar
  12. Costello CG (1972) Depression: loss of reinforcers or loss of reinforcer effectiveness? Behav Ther 3:240–247CrossRefGoogle Scholar
  13. Daw ND, Niv Y, Dayan P (2005) Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat Neurosci 8(12):1704–1711PubMedCrossRefGoogle Scholar
  14. Dayan P (2009) Dopamine, reinforcement learning, and addiction. Pharmacopsychiatry 42(Suppl 1):S56–S65PubMedCrossRefGoogle Scholar
  15. Dayan P (2012) Instrumental vigour in punishment and reward. Eur J Neurosci 35(7):1152–1168PubMedCrossRefGoogle Scholar
  16. Dayan P, Huys QJM (2008) Serotonin, inhibition, and negative mood. PLoS Comput Biol 4(2):e4PubMedCentralPubMedCrossRefGoogle Scholar
  17. Dayan P, Huys QJM (2009) Serotonin in affective control. Annu Rev Neurosci 32:95–126PubMedCrossRefGoogle Scholar
  18. Dickinson A, Smith J, Mirenowicz J (2000) Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav Neurosci 114(3):468–483PubMedCrossRefGoogle Scholar
  19. Egerton A, Chaddock CA, Winton-Brown TT, Bloomfield MAP, Bhattacharyya S, Allen P, McGuire PK, Howes OD (2013) Presynaptic striatal dopamine dysfunction in people at ultra-high risk for psychosis: findings in a second cohort. Biol Psychiatry 74(2):106–112PubMedCrossRefGoogle Scholar
  20. Everitt BJ, Robbins TW (2005) Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat Neurosci 8(11):1481–1489PubMedCrossRefGoogle Scholar
  21. Fletcher PC, Frith CD (2009) Perceiving is believing: a Bayesian approach to explaining the positive symptoms of schizophrenia. Nat Rev Neurosci 10(1):48–58PubMedCrossRefGoogle Scholar
  22. Ford JM, Roach BJ, Faustman WO, Mathalon DH (2007) Synch before you speak: auditory hallucinations in schizophrenia. Am J Psychiatry 164(3):458–466PubMedCrossRefGoogle Scholar
  23. Frank MJ (2005) Dynamic dopamine modulation in the basal ganglia: a neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. J Cogn Neurosci 17(1):51–72PubMedCrossRefGoogle Scholar
  24. Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE (2007) Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci U S A 104(41):16311–16316PubMedCentralPubMedCrossRefGoogle Scholar
  25. Friston K (2008) Hierarchical models in the brain. PLoS Comput Biol 4(11):e1000211PubMedCentralPubMedCrossRefGoogle Scholar
  26. Friston KJ, Frith CD (1995) Schizophrenia: a disconnection syndrome? Clin Neurosci 3(2):89–97PubMedGoogle Scholar
  27. Garety PA, Freeman D, Jolley S, Dunn G, Bebbington PE, Fowler DG, Kuipers E, Dudley R (2005) Reasoning, emotions, and delusional conviction in psychosis. J Abnorm Psychol 114(3):373–384PubMedCrossRefGoogle Scholar
  28. Gelder M, Harrison P, Cowen P (2006) Shorter Oxford textbook of psychiatry. Oxford University Press, OxfordGoogle Scholar
  29. Gradin VB, Kumar P, Waiter G, Ahearn T, Stickle C, Milders M, Reid I, Hall J, Steele JD (2011) Expected value and prediction error abnormalities in depression and schizophrenia. Brain 134(Pt 6):1751–1764PubMedCrossRefGoogle Scholar
  30. Gray J, Feldon J, Rawlins J, Hemsley D, Smith A (1991) The neuropsychology of schizophrenia. Behav Brain Sci 14(01):1–20CrossRefGoogle Scholar
  31. Grossberg S, Pepe J (1970) Schizophrenia: possible dependence of associational span, bowing, and primacy vs. recency on spiking threshold. Behav Sci 15(4):359–362PubMedCrossRefGoogle Scholar
  32. Guitart-Masip M, Huys QJM, Fuentemilla L, Dayan P, Duzel E, Dolan RJ (2012) Go and no-go learning in reward and punishment: interactions between affect and effect. Neuroimage 62(1):154–166PubMedCrossRefGoogle Scholar
  33. Hasler G (2012) Can the neuroeconomics revolution revolutionize psychiatry? Neurosci Biobehav Rev 36(1):64–78PubMedCrossRefGoogle Scholar
  34. Heinz A (2002) Dopaminergic dysfunction in alcoholism and schizophrenia-psychopathological and behavioral correlates. Eur Psychiatry 17(1):9–16PubMedCrossRefGoogle Scholar
  35. Henriques JB, Glowacki JM, Davidson RJ (1994) Reward fails to alter response bias in depression. J Abnorm Psychol 103(3):460–466PubMedCrossRefGoogle Scholar
  36. Hoffman RE (1987) Computer simulations of neural information processing and the schizophrenia-mania dichotomy. Arch Gen Psychiatry 44(2):178–188PubMedCrossRefGoogle Scholar
  37. Huys QJM, Moutoussis M, Williams J (2011) Are computational models of any use to psychiatry? Neural Netw 24(6):544–551PubMedCrossRefGoogle Scholar
  38. Huys QJM, Eshel N, O’Nions E, Sheridan L, Dayan P, Roiser JP (2012) Bonsai trees in your head: how the Pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput Biol 8(3):e1002410PubMedCentralPubMedCrossRefGoogle Scholar
  39. Huys QJM, Pizzagalli DA, Bogdan R, Dayan P (2013) Mapping anhedonia onto reinforcement learning: a behavioural meta-analysis. Biol Mood Anxiety Disord 3(1):12PubMedCentralPubMedCrossRefGoogle Scholar
  40. Jensen J, Willeit M, Zipursky RB, Savina I, Smith AJ, Menon M, Crawley AP, Kapur S (2008) The formation of abnormal associations in schizophrenia: neural and behavioral evidence. Neuropsychopharmacology 33(3):473–479PubMedCrossRefGoogle Scholar
  41. Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wstenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A (2006) Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology (Berl) 187(2):222–228CrossRefGoogle Scholar
  42. Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160(1):13–23PubMedCrossRefGoogle Scholar
  43. Kapur S, Zipursky R, Jones C, Remington G, Houle S (2000) Relationship between dopamine d(2) occupancy, clinical response, and side effects: a double-blind pet study of first-episode schizophrenia. Am J Psychiatry 157(4):514–520PubMedCrossRefGoogle Scholar
  44. Kendler KS, Karkowski LM, Prescott CA (1999) Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 156:837–841PubMedGoogle Scholar
  45. King R, Barchas JD, Huberman BA (1984) Chaotic behavior in dopamine neurodynamics. Proc Natl Acad Sci U S A 81(4):1244–1247PubMedCentralPubMedCrossRefGoogle Scholar
  46. King-Casas B, Tomlin D, Anen C, Camerer CF, Quartz SR, Montague PR (2005) Getting to know you: reputation and trust in a two-person economic exchange. Science 308(5718):78–83PubMedCrossRefGoogle Scholar
  47. King-Casas B, Sharp C, Lomax-Bream L, Lohrenz T, Fonagy P, Montague PR (2008) The rupture and repair of cooperation in borderline personality disorder. Science 321(5890):806–810PubMedCentralPubMedCrossRefGoogle Scholar
  48. Koshelev M, Lohrenz T, Vannucci M, Montague PR (2010) Biosensor approach to psychopathology classification. PLoS Comput Biol 6(10):e1000966PubMedCentralPubMedCrossRefGoogle Scholar
  49. Kumar P, Waiter G, Ahearn T, Milders M, Reid I, Steele JD (2008) Abnormal temporal difference reward-learning signals in major depression. Brain 131(Pt 8):2084–2093PubMedCrossRefGoogle Scholar
  50. Laruelle M, Kegeles LS, Abi-Darghama A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003(1):138–158PubMedCrossRefGoogle Scholar
  51. Lieder F, Goodman N, Huys QJM (2013) Learned helplessness and generalization. Proc Annu Conf Cognit Sci SocGoogle Scholar
  52. Lucantonio F, Stalnaker TA, Shaham Y, Niv Y, Schoenbaum G (2012) The impact of orbitofrontal dysfunction on cocaine addiction. Nat Neurosci 15(3):358–366PubMedCentralPubMedCrossRefGoogle Scholar
  53. Mackey MC, Milton JG (1987) Dynamical diseases. Ann NY Acad Sci 504:16–32PubMedCrossRefGoogle Scholar
  54. Maia TV, Frank MJ (2011) From reinforcement learning models to psychiatric and neurological disorders. Nat Neurosci 14(2):154–162PubMedCrossRefGoogle Scholar
  55. Maier S, Seligman M (1976) Learned helplessness: theory and evidence. J Exp Psychol Gen 105(1):3–46CrossRefGoogle Scholar
  56. Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29(4–5):829–841PubMedCrossRefGoogle Scholar
  57. Marr D (1982) Vision. Freeman, New YorkGoogle Scholar
  58. McClelland J, Rumelhart D, Hinton GE (1986) Parallel distributed processing. MIT Press, Cambridge, MAGoogle Scholar
  59. Miller WR, Seligman ME (1975) Depression and learned helplessness in man. J Abnorm Psychol 84(3):228–238PubMedCrossRefGoogle Scholar
  60. Milton JG (2010) Epilepsy as a dynamic disease: a tutorial of the past with an eye to the future. Epilepsy Behav 18(1–2):33–44PubMedCrossRefGoogle Scholar
  61. Montague PR, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16(5):1936–1947PubMedGoogle Scholar
  62. Montague PR, Dolan RJ, Friston KJ, Dayan P (2012) Computational psychiatry. Trends Cogn Sci 16(1):72–80PubMedCentralPubMedCrossRefGoogle Scholar
  63. Moutoussis M, Bentall RP, Williams J, Dayan P (2008) A temporal difference account of avoidance learning. Network 19(2):137–160PubMedCrossRefGoogle Scholar
  64. Moutoussis M, Bentall RP, El-Deredy W, Dayan P (2011) Bayesian modelling of jumping-to-conclusions bias in delusional patients. Cognit Neuropsychiatr 16(5):422–447CrossRefGoogle Scholar
  65. Murray GK, Corlett PR, Clark L, Pessiglione M, Blackwell AD, Honey G, Jones PB, Bullmore ET, Robbins TW, Fletcher PC (2008) Substantia nigra/ventral tegmental reward prediction error disruption in psychosis. Mol Psychiatry 13(3):239, 267–276PubMedCentralPubMedCrossRefGoogle Scholar
  66. Nelson A, Killcross S (2006) Amphetamine exposure enhances habit formation. J Neurosci 26(14):3805–3812PubMedCrossRefGoogle Scholar
  67. Pizzagalli DA, Jahn AL, O’Shea JP (2005) Toward an objective characterization of an anhedonic phenotype: a signal-detection approach. Biol Psychiatry 57(4):319–327PubMedCentralPubMedCrossRefGoogle Scholar
  68. Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat Neurosci 2(1):79–87PubMedCrossRefGoogle Scholar
  69. Ray D, King-Casas B, Montague PR, Dayan P (2009) Bayesian model of behaviour in economic games. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems 21. Proceedings of the twenty-second annual conference on neural information processing systems, Vancouver. Curran Associates, New York, pp 1345–1352Google Scholar
  70. Redish AD (2004) Addiction as a computational process gone awry. Science 306(5703):1944–1947PubMedCrossRefGoogle Scholar
  71. Redish AD, Jensen S, Johnson A (2008) A unified framework for addiction: vulnerabilities in the decision process. Behav Brain Sci 31(4):415–437, discussion 437–487PubMedCentralPubMedGoogle Scholar
  72. Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275(5306):1593–1599PubMedCrossRefGoogle Scholar
  73. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261(5562):717–719PubMedCrossRefGoogle Scholar
  74. Seligman ME, Maier SF (1967) Failure to escape traumatic shock. J Exp Psychol 74(1):1–9PubMedCrossRefGoogle Scholar
  75. Smith KA, Fairburn CG, Cowen PJ (1997) Relapse of depression after rapid depletion of tryptophan. Lancet 249:915–919CrossRefGoogle Scholar
  76. Smith AJ, Li M, Becker S, Kapur S (2004) A model of antipsychotic action in conditioned avoidance: a computational approach. Neuropsychopharmacology 29(6):1040–1049PubMedCrossRefGoogle Scholar
  77. Smith AJ, Becker S, Kapur S (2005) A computational model of the functional role of the ventral-striatal d2 receptor in the expression of previously acquired behaviors. Neural Comput 17(2):361–395PubMedCrossRefGoogle Scholar
  78. Smith AJ, Li M, Becker S, Kapur S (2007) Linking animal models of psychosis to computational models of dopamine function. Neuropsychopharmacology 32(1):54–66PubMedCrossRefGoogle Scholar
  79. Soubrié P (1986) Reconciling the role of central serotonin neurons in human and animal behaviour. Behav Brain Sci 9:319–364CrossRefGoogle Scholar
  80. Steele JD, Kumar P, Ebmeier KP (2007) Blunted response to feedback information in depressive illness. Brain 130(Pt 9):2367–2374PubMedCrossRefGoogle Scholar
  81. Stephan KE, Baldeweg T, Friston KJ (2006) Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry 59(10):929–939PubMedCrossRefGoogle Scholar
  82. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group studies. Neuroimage 46(4):1004–1017PubMedCentralPubMedCrossRefGoogle Scholar
  83. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge, MAGoogle Scholar
  84. Tomlin D, Kayali MA, King-Casas B, Anen C, Camerer CF, Quartz SR, Montague PR (2006) Agent-specific responses in the cingulate cortex during economic exchanges. Science 312(5776):1047–1050PubMedCrossRefGoogle Scholar
  85. Volkow ND, Fowler JS, Wang GJ, Baler R, Telang F (2009) Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology 56(Suppl 1):3–8PubMedCentralPubMedCrossRefGoogle Scholar
  86. Willner P (1997) Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134:319–329CrossRefGoogle Scholar
  87. Yoshida W, Dolan RJ, Friston KJ (2008) Game theory of mind. PLoS Comput Biol 4(12):e1000254PubMedCentralPubMedCrossRefGoogle Scholar
  88. Yoshida W, Dziobek I, Kliemann D, Heekeren HR, Friston KJ, Dolan RJ (2010a) Cooperation and heterogeneity of the autistic mind. J Neurosci 30(26):8815–8818PubMedCentralPubMedCrossRefGoogle Scholar
  89. Yoshida W, Seymour B, Friston KJ, Dolan RJ (2010b) Neural mechanisms of belief inference during cooperative games. J Neurosci 30(32):10744–10751PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Translational Neuromodeling Unit, Institute of Biomedical Engineering, ETH and University of Zurich, and Department of Psychiatry, Psychosomatics and PsychotherapyHospital of Psychiatry, University of ZurichZurichSwitzerland