Skip to main content

Sensory Input to Central Pattern Generators

Encyclopedia of Computational Neuroscience

Synonyms

Afferent feedback to neural oscillators; Afferent input to rhythm generating networks; Proprioceptive feedback to central pattern generators; Sensory drive to rhythmic neuronal networks; Sensory modulation of central pattern generators

Definition

A central pattern generator (CPG) is an assembly of neurons (neuronal network) that produces rhythmic activity without requiring phasic input signals and often drives the motor system and rhythmic muscle movements. Sensory feedback to a CPG circuit is the return signal from the sensory system in response to this rhythmic muscle movement, which conveys a continuous measurement of the output behavior to the CPG.

Detailed Description

Individual neural networks, such as CPGs, can generate rhythmic output patterns even in the absence of any phasic input. They drive vital behaviors such as breathing, swallowing, and chewing, as well as locomotion and saccadic eye movements, and often continue to function even in isolated nervous system...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akay T, Ludwar B, Goritz ML, Schmitz J, Buschges A (2007) Segment specificity of load signal processing depends on walking direction in the stick insect leg muscle control system. J Neurosci 27:3285–3294

    Article  PubMed  CAS  Google Scholar 

  • Antri M, Fenelon K, Dubuc R (2009) The contribution of synaptic inputs to sustained depolarizations in reticulospinal neurons. J Neurosci 29:1140–1151

    Article  PubMed  CAS  Google Scholar 

  • Ausborn J, Stein W, Wolf H (2007) Frequency control of motor patterning by negative sensory feedback. J Neurosci 27:9319–9328

    Article  PubMed  CAS  Google Scholar 

  • Ausborn J, Wolf H, Stein W (2009) The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern. J Comput Neurosci 27:245–257

    Article  PubMed  Google Scholar 

  • Bässler U (1986) On the definition of central pattern generator and its sensory control. Biol Cybern 54:65–69

    Article  Google Scholar 

  • Bässler U (1993) The femur-tibia control system of stick insects–a model system for the study of the neural basis of joint control. Brain Res Brain Res Rev 18:207–226

    Article  PubMed  Google Scholar 

  • Bässler U, Nothof U (1994) Gain control in a proprioceptive feedback loop as a prerequisite for working close to instability. J Comput Biol 175:23–33

    Google Scholar 

  • Berkowitz A, Roberts A, Soffe SR (2010) Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. Front Behav Neurosci 4:36

    PubMed  PubMed Central  Google Scholar 

  • Birmingham JT (2001) Increasing sensor flexibility through neuromodulation. Biol Bull 200:206–210

    Article  PubMed  CAS  Google Scholar 

  • Birmingham JT, Szuts ZB, Abbott LF, Marder E (1999) Encoding of muscle movement on two time scales by a sensory neuron that switches between spiking and bursting modes. J Neurophysiol 82:2786–2797

    PubMed  CAS  Google Scholar 

  • Blitz DM, Nusbaum MP (2011) Neural circuit flexibility in a small sensorimotor system. Curr Opin Neurobiol 21:544–552

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Blitz DM, Nusbaum MP (2012) Modulation of circuit feedback specifies motor circuit output. J Neurosci 32:9182–9193

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bonte B, Linden RW, Scott BJ, van Steenberghe D (1993) Role of periodontal mechanoreceptors in evoking reflexes in the jaw-closing muscles of the cat. J Physiol 465:581–594

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buchanan JT (2011) Spinal locomotor inputs to individually identified reticulospinal neurons in the lamprey. J Neurophysiol 106:2346–2357

    Article  PubMed  PubMed Central  Google Scholar 

  • Burrows M (1996) The neurobiology of an insect brain. Oxford University Press, New York

    Book  Google Scholar 

  • Büschges A (2005) Sensory control and organization of neural networks mediating coordination of multisegmental organs for locomotion. J Neurophysiol 93:1127–1135

    Article  PubMed  Google Scholar 

  • Büschges A, Scholz H, El Manira A (2011) New moves in motor control. Curr Biol 21:513–524

    Article  Google Scholar 

  • Chevallier S, Jan Ijspeert A, Ryczko D, Nagy F, Cabelguen JM (2008) Organisation of the spinal central pattern generators for locomotion in the salamander: biology and modelling. Brain Res Rev 57:147–161

    Article  PubMed  Google Scholar 

  • Combes D, Meyrand P, Simmers J (1999) Dynamic restructuring of a rhythmic motor program by a single mechanoreceptor neuron in lobster. J Neurosci 19:3620–3628

    PubMed  CAS  Google Scholar 

  • Cruse H (2002) The functional sense of central oscillations in walking. Biol Cybern 86:271–280

    Article  PubMed  CAS  Google Scholar 

  • Cruse H (2009) Neural networks as cybernetic systems, 3rd and revised edn. Brains, Minds & Media. http://www.brains-minds-media.org/archive/1990/bmm1841.pdf

  • Daur N, Nadim F, Stein W (2009) Regulation of motor patterns by the central spike-initiation zone of a sensory neuron. Eur J Neurosci 30:808–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Dickinson MH (2005) The initiation and control of rapid flight maneuvers in fruit flies. Integr Comp Biol 45:274

    Article  PubMed  Google Scholar 

  • Dickinson PS (2006) Neuromodulation of central pattern generators in invertebrates and vertebrates. Curr Opin Neurobiol 16:604–614

    Article  PubMed  CAS  Google Scholar 

  • Doi A, Ramirez JM (2008) Neuromodulation and the orchestration of the respiratory rhythm. Respir Physiol Neurobiol 164:96–104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • El Manira A, Kyriakatos A, Nanou E (2010) Beyond connectivity of locomotor circuitry-ionic and modulatory mechanisms. Prog Brain Res 187:99–110

    Article  PubMed  Google Scholar 

  • Fry SN, Rohrseitz N, Straw AD, Dickinson MH (2008) TrackFly: virtual reality for a behavioral system analysis in free-flying fruit flies. J Neurosci Methods 171:110–117

    Article  PubMed  Google Scholar 

  • Garcia-Crescioni K, Fort TJ, Stern E, Brezina V, Miller MW (2010) Feedback from peripheral musculature to central pattern generator in the neurogenic heart of the crab Callinectes sapidus: role of mechanosensitive dendrites. J Neurophysiol 103:83–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon IT, Whelan PJ (2006) Deciphering the organization and modulation of spinal locomotor central pattern generators. J Exp Biol 209:2007–2014

    Article  PubMed  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  PubMed  CAS  Google Scholar 

  • Grillner S, Markram H, De Schutter E, Silberberg G, LeBeau FE (2005) Microcircuits in action–from CPGs to neocortex. Trends Neurosci 28:525–533

    Article  PubMed  CAS  Google Scholar 

  • Harris-Warrick RM (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21:685–692

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hedrich UB, Smarandache CR, Stein W (2009) Differential activation of projection neurons by two sensory pathways contributes to motor pattern selection. J Neurophysiol 102:2866–2879

    Article  PubMed  Google Scholar 

  • Hooper SL (2000) Central pattern generators. Curr Biol 10:R176

    Article  PubMed  Google Scholar 

  • Isa T, Sparks DL (2006) Microcircuit of the superior colliculus. A neuronal machine that determines timing and endpoint of saccadic eye movements. In: Grillner S, Graybiel AM (eds) Microcircuits: the interface between neurons and global brain function. MIT Press, Cambridge, MA, pp 5–34

    Google Scholar 

  • Katz PS, Hooper SL (2007) Invertebrate central pattern generators. Cold Spring Harb Monogr Ser 49:251

    Google Scholar 

  • Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306

    Article  PubMed  CAS  Google Scholar 

  • Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76:1–11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  • Mehrholz J, Kugler J, Pohl M (2012) Locomotor training for walking after spinal cord injury. Cochrane Database Syst Rev 11, CD006676

    PubMed  Google Scholar 

  • Mronz M, Lehmann FO (2008) The free-flight response of Drosophila to motion of the visual environment. J Exp Biol 211:2026–2045

    Article  PubMed  Google Scholar 

  • Nicolelis MA (2003) Brain-machine interfaces to restore motor function and probe neural circuits. Nat Rev Neurosci 4:417–422

    Article  PubMed  CAS  Google Scholar 

  • Pearson KG (2004) Generating the walking gait: role of sensory feedback. Prog Brain Res 143:123–129

    Article  PubMed  Google Scholar 

  • Rossignol S, Frigon A (2011) Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci 34:413–440

    Article  PubMed  CAS  Google Scholar 

  • Rossignol S, Dubuc R, Gossard JP (2006) Dynamic sensorimotor interactions in locomotion. Physiol Rev 86:89–154

    Article  PubMed  Google Scholar 

  • Sareen P, Wolf R, Heisenberg M (2011) Attracting the attention of a fly. Proc Natl Acad Sci USA 108:7230–7235

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Skorupski P, Sillar KS (1986) Phase-dependent reversal of reflexes mediated by the thoracocoxal muscle receptor organ in the crayfish, Pacifastacus leniusculus. J Neurophysiol 55:689–695

    PubMed  CAS  Google Scholar 

  • Smarandache CR, Daur N, Hedrich UB, Stein W (2008) Regulation of motor pattern frequency by reversals in proprioceptive feedback. Eur J Neurosci 28:460–474

    Article  PubMed  Google Scholar 

  • Srinivasan MV (2011) Honeybees as a model for the study of visually guided flight, navigation, and biologically inspired robotics. Physiol Rev 91:413–460

    Article  PubMed  CAS  Google Scholar 

  • Stein W (2009) Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 195:989–1009

    Article  PubMed  Google Scholar 

  • Stein W, Schmitz J (1999) Multimodal convergence of presynaptic afferent inhibition in insect proprioceptors. J Neurophysiol 82:512–514

    PubMed  CAS  Google Scholar 

  • Suster ML, Bate M (2002) Embryonic assembly of a central pattern generator without sensory input. Nature 416:174–178

    Article  PubMed  CAS  Google Scholar 

  • von Holst E, Mittelstädt H (1950) The reafference principle. Interaction between the central nervous system and the periphery. In: Selected papers of Erich von Holst: the behavioural physiology of animals and man. Methuen, London, pp 39–73

    Google Scholar 

  • Wolf H (1993) The locust tegula: significance for flight rhythm generation, wing movement control and aerodynamic force production. J Exp Biol 182:229–253

    Google Scholar 

  • Wolf H, Burrows M (1995) Proprioceptive sensory neurons of a locust leg receive rhythmic presynaptic inhibition during walking. J Neurosci 15:5623–5636

    PubMed  CAS  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Stein, W. (2014). Sensory Input to Central Pattern Generators. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_465-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_465-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Sensory Input to Central Pattern Generators
    Published:
    31 July 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_465-4

  2. Original

    Sensory Input to Central Pattern Generators
    Published:
    08 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_465-3