Skip to main content

Auditory-Nerve Response, Afferent Signals

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 31 Accesses

Definition

Sequences of action potentials (spikes) of individual auditory-nerve fibers (ANFs), the primary auditory afferents, in response to sounds impinging upon the ears.

Detailed Description

Anatomical Foundations

Acoustic information relayed from the inner ear to the central nervous system is encoded in the sequences of spikes produced by (type I) ANFs. In mammals, each ANF contacts only one receptor cell (an inner hair cell, IHC) and is excited by transmitter release events from a single ribbon synapse (Ashmore 2010; Matthews and Fuchs 2010; Chapochnikov et al. 2014). Each IHC has 5–30 ribbons, depending upon species and cochlear location (e.g., Meyer et al. 2009; Zhang et al. 2018). The ANFs innervating a given IHC therefore share some, although not all, functional response properties.

Spontaneous Activity

ANFs produce spikes in the absence of external sound (spontaneous activity). The mean spontaneous rate varies between ANFs, in mammals from near zero up to more than 100...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ashmore J (2010) The afferent synapse. In: Fuchs PA, Moore DR (eds) The Oxford handbook of auditory science: the ear. Oxford University Press, Oxford, pp 260–282

    Google Scholar 

  • Bourien J, Tang Y, Batrel C, Huet A, Lenoir M, Ladrech S, Desmadryl G, Nouvian R, Puel JL, Wang J (2014) Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J Neurophysiol 112:1025–1039

    Article  CAS  Google Scholar 

  • Bruce IC, Erfani Y, Zilany MSA (2018) A phenomenological model of the synapse between the inner hair cell and auditory nerve: implications of limited neurotransmitter release sites. Hear Res 360:40–54

    Article  Google Scholar 

  • Chapochnikov NM, Takago H, Huang C-H, Pangršič T, Khimich D, Neef J, Auge E, Göttfert F, Hell SW, Wichmann C, Wolf F, Moser T (2014) Uniquantal release through a dynamic fusion pore is a candidate mechanism of hair cell exocytosis. Neuron 83:1389–1403

    Article  CAS  Google Scholar 

  • Guinan JJ Jr (2012) How are inner hair cells stimulated? Evidence for multiple mechanical drives. Hear Res 292:35–50

    Article  Google Scholar 

  • Heil P, Peterson AJ (2015) Basic response properties of auditory nerve fibers: a review. Cell Tissue Res 361:129–158

    Article  Google Scholar 

  • Heil P, Peterson AJ (2017) Spike timing in auditory-nerve fibers during spontaneous activity and phase locking. Synapse 71:5–36

    Article  CAS  Google Scholar 

  • Heil P, Neubauer H, Irvine DRF (2011) An improved model for the rate-level functions of auditory-nerve fibers. J Neurosci 31:15424–15437

    Article  CAS  Google Scholar 

  • Henry KS, Heinz MG (2013) Effects of sensorineural hearing loss on temporal coding of narrowband and broadband signals in the auditory periphery. Hear Res 303:39–47

    Article  Google Scholar 

  • Huang S, Olson ES (2011) Auditory nerve excitation via a non-traveling wave mode of basilar membrane motion. J Assoc Res Otolaryngol 12:559–575

    Article  Google Scholar 

  • Kujawa SG, Liberman MC (2009) Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci 29:14077–14085

    Article  CAS  Google Scholar 

  • Liberman MC (1978) Auditory-nerve responses from cats raised in a low noise chamber. J Acoust Soc Am 63:442–455

    Article  CAS  Google Scholar 

  • Matthews G, Fuchs PA (2010) The diverse roles of ribbon synapses in sensory neurotransmission. Nat Rev Neurosci 11:812–822

    Article  CAS  Google Scholar 

  • Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of synapse number, structure and function in the cochlea. Nat Neurosci 12:444–453

    Article  CAS  Google Scholar 

  • Michelet D, Kovačić P, Joris PX (2012) Ongoing temporal coding of a stochastic stimulus as a function of intensity: time-intensity trading. J Neurosci 32:9517–9527

    Article  CAS  Google Scholar 

  • Peterson AJ, Heil P (2018) A simple model of the inner-hair-cell ribbon synapse accounts for mammalian auditory-nerve-fiber spontaneous spike times. Hear Res 363:1–27

    Article  Google Scholar 

  • Pickles JO (2012) An introduction to the physiology of hearing, 4th edn. Emerald Group Publishing Limited, Bingley

    Google Scholar 

  • Temchin AN, Rich NC, Ruggero MA (2008) Threshold tuning curves of chinchilla auditory-nerve fibers. II. Dependence on spontaneous activity and relation to cochlear non-linearity. J Neurophysiol 100:2899–2906

    Article  Google Scholar 

  • van der Heijden M, Joris PX (2006) Panoramic measurements of the apex of the cochlea. J Neurosci 26:11462–11473

    Article  Google Scholar 

  • Wen B, Wang GI, Dean I, Delgutte B (2009) Dynamic range adaptation to sound level statistics in the auditory nerve. J Neurosci 29:13797–13808

    Article  CAS  Google Scholar 

  • Winter IM, Robertson D, Yates GK (1990) Diversity of characteristic frequency rate-intensity functions in Guinea pig auditory nerve fibres. Hear Res 45:191–202

    Article  CAS  Google Scholar 

  • Wu JS, Young ED, Glowatzki E (2016) Maturation of spontaneous firing properties after hearing onset in rat auditory nerve fibers: spontaneous rates, refractoriness, and interfiber correlations. J Neurosci 36:10584–10597

    Article  CAS  Google Scholar 

  • Young ED (2012) Neural coding of sound with cochlear damage. In: Henderson D, LePrell CG (eds) Noise-induced hearing loss: scientific advances. Springer, New York, pp 87–135

    Chapter  Google Scholar 

  • Zhang L, Engler S, Koepcke L, Steenken F, Köppl C (2018) Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells. Hear Res 364:81–89

    Article  CAS  Google Scholar 

  • Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Heil .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Heil, P. (2019). Auditory-Nerve Response, Afferent Signals. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_424-7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_424-7

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Auditory-Nerve Response, Afferent Signals
    Published:
    10 August 2019

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_424-7

  2. Auditory Nerve Response, Afferent Signals
    Published:
    06 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_424-6

  3. Original

    Auditory Nerve Response, Afferent Signals
    Published:
    07 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_424-5