Skip to main content

Computational Analysis of Rodent Spinal CPG

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 195 Accesses

Definition

The production of patterned locomotor output by the rodent neuromuscular system is regulated by the central pattern generator(s) of the spinal cord. The rodent spinal CPG is capable of producing a wide range of gaits, and in particular the default “fundamental locomotor rhythm” of walking. Fictive locomotor experiments and transgenic rodent lines have produced a wealth of information about the neuronal constituency and synaptic organization of the rodent spinal CPG, but many neuronal subpopulations have yet to be identified and the full synaptic architecture is far from being definitively mapped out. A few mathematical and computational models have been proposed which (1) integrate experimental results into a unified, interrogable conceptual framework and (2) enable the testing of various hypotheses of CPG organization in silico. The ultimate goal of computational modeling and analysis of the rodent spinal CPG is to link specific network structures and intrinsic neuronal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Buono P-L (2001) Models of central pattern generators for quadruped locomotion II. Secondary gaits. J Math Biol 42:327–346

    Article  CAS  PubMed  Google Scholar 

  • Buono P-L, Golubitsky M (2001) Models of central pattern generators for quadruped locomotion I. Primary gaits. J Math Biol 42:291–326

    Article  CAS  PubMed  Google Scholar 

  • Dietz SB, Shevtsova NA, Rybak IA, Harris-Warrick RM (2013) An asymmetric model of the spinal locomotor central pattern generator: insights from afferent stimulations. BMC Neurosci 14(Suppl 1):P161

    Article  PubMed Central  Google Scholar 

  • Golubitsky M, Stewart I, Buono P-L, Collins JJ (1999) Symmetry in locomotor central pattern generators and animal gaits. Nature 401:693–695

    Article  CAS  PubMed  Google Scholar 

  • Ivashko DG, Prilutsky BI, Markin SN, Chapin JK, Rybak IA (2003) Modeling the spinal cord neural circuitry controlling cat hind limb movement during locomotion. Neurocomputing 52–54:621–629

    Article  Google Scholar 

  • McCrea DA, Rybak IA (2007) Modeling the mammalian locomotor CPG: insights from mistakes and perturbations. Prog Brain Res 165:235–253

    Article  PubMed Central  PubMed  Google Scholar 

  • Sherwood WE, Harris-Warrick R, Guckenheimer J (2011) Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 30(2):323–360

    Article  PubMed  Google Scholar 

  • Stewart I, Golubitsky M, Pivato M (2003) Symmetry groupoids and patterns of synchrony in coupled cell networks. SIAM J Appl Dyn Syst 2(4):609–646

    Article  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7(12):1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Rybak IA, Shevtsova NA, Lafreniere-Roula M, McCrea DA (2006a) Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol 577(2):641–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rybak IA, Stecina K, Shevtsova NA, McCrea DA (2006b) Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion. J Physiol 577(2):617–639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Further Reading

  • Dougherty KJ, Kiehn O (2010a) Functional organization of V2a-related locomotor circuits in the rodent spinal cord. Ann N Y Acad Sci 1198(1):85–93

    Article  PubMed  Google Scholar 

  • Dougherty KJ, Kiehn O (2010b) Firing and cellular properties of V2a interneurons in the rodent spinal cord. J Neurosci 30(1):24–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harris-Warrick RM (2011) Neuromodulation and flexibility in central pattern generator networks. Curr Opin Neurobiol 21(5):685–692

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kiehn O (2006) Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci 29:279–306

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O (2011) Development and functional organization of spinal locomotor circuits. Curr Opin Neurobiol 21(1):100–109

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Butt SJB (2003) Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Prog Neurobiol 70:347–361

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Kjaerulff O (1998) Distribution of central pattern generators for rhythmic motor outputs in the spinal cord of limbed vertebrates. Ann N Y Acad Sci 860:110–129

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Kullander K (2004) Central pattern generators deciphered by molecular genetics. Neuron 41:317–321

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Tresch MC (2002) Gap junctions and motor behavior. Trends Neurosci 25(2):108–115

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Sillar KT, Kjaerulff O, McDearmid JR (1999) Effects of noradrenaline on locomotor rhythm-generating networks in the isolated neonatal rat spinal cord. J Neurophysiol 82:741–746

    CAS  PubMed  Google Scholar 

  • Kiehn O, Kjaerulff O, Tresch MC, Harris-Warrick RM (2000) Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain Res Bull 53(5):649–659

    Article  CAS  PubMed  Google Scholar 

  • Kiehn O, Quinlan KA, Restrepo CE, Lundfald L, Borgius L, Talpalar AE, Endo T (2008) Excitatory components of the mammalian locomotor CPG. Brain Res Brain Res Rev 57:56–63

    Article  Google Scholar 

  • Lundfald L, Restrepo CE, Butt SJB, Peng C-Y, Droho S, Endo T, Zeilhofer HU, Sharma K, Kiehn O (2007) Phenotype of V2-derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. Eur J Neurosci 26:2989–3002

    Article  PubMed  Google Scholar 

  • Meehan CF, Grondahl L, Nielsen JB, Hultborn H (2012) Fictive locomotion in the adult decerebrate and spinal mouse in vivo. J Physiol 590(2):289–300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimaru H, Restrepo CE, Kiehn O (2006) Activity of renshaw cells during locomotor-like rhythmic activity in the isolated spinal cord of neonatal mice. J Neurosci 26(20):5320–5328

    Article  CAS  PubMed  Google Scholar 

  • Quinlan KA, Kiehn O (2007) Segmental, synaptic actions of commissural interneurons in the mouse spinal cord. J Neurosci 27(24):6521–6530

    Article  CAS  PubMed  Google Scholar 

  • Sherwood WE, Guckenheimer J (2010) Dissecting the phase response of a model bursting neuron. SIAM J Appl Dyn Syst 9(3):659–768

    Article  Google Scholar 

  • Zhong G, Shevtsova NA, Rybak IA, Harris-Warrick RM (2012) Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization. J Physiol 590(19):4735–4759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Erik Sherwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Sherwood, W.E. (2014). Computational Analysis of Rodent Spinal CPG. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_40-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_40-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Computational Analysis of Rodent Spinal CPG
    Published:
    08 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_40-2

  2. Original

    Computational Analysis of the Rodent Spinal CPG
    Published:
    06 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_40-1