Skip to main content

Hippocampus, Model Inhibitory Cells

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Hippocampus, model inhibitory cells refer to mathematical models of neurons that are designed to represent (GABAergic) inhibitory interneurons in the hippocampus. Specifically, biophysically motivated models of interneurons located in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus are described. These cellular models have been developed for two main purposes: (i) to examine how their biophysical characteristics affect and control electrophysiological output and (ii) to examine network output given the modeled cellular characteristics. This entry summarizes a comprehensive set of such models.

Detailed Description

Introduction and Background Context

The brain consists of two classes of neurons, excitatory and inhibitory cells. Excitatory cells were typically thought to be long ranging with their connections, whereas inhibitory cells were viewed as “local circuit neurons” or interneurons (Shepherd 2003). Today, it is clear that this is not necessarily the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Ca-L :

L-type calcium. Also referred to as high threshold type, non-inactivating

Ca-N :

N-type calcium

Ca-T :

T-type calcium. Also referred to as low threshold type, inactivating, and associated with post-inhibitory rebound

h-sag :

Hyperpolarization-activated (sag) inward

K-A :

A-type, transient potassium

K-AHP :

AHP potassium. Only calcium dependent, not voltage dependent, apamin sensitive, sometimes referred to as SK, and responsible for slow AHP, but could also be part of medium AHP

K- Ca :

Calcium-dependent potassium. Calcium and voltage dependent, sometimes referred to as BK and responsible for fast AHP aspects

K-D :

Slowly inactivating potassium

K-DR :

Delayed rectifier potassium. HH type

K-DRf :

Fast delayed rectifier

K-DRs :

Slow delayed rectifier

K-M :

Muscarinic, potassium

Na :

Sodium. Transient, HH type

Na-p :

Persistent sodium

AAC :

Axo-axonic cell

AHP :

Afterhyperpolarization

BSC :

Bistratified cell

CB+ :

Calbindin positive

CCK+ :

Cholecystokinin positive

DG :

Dentate gyrus

EPSP :

Excitatory postsynaptic potential

GABA :

γ-aminobutyric acid

GJ :

Gap junction

HH :

Hodgkin–Huxley

HIPP :

Hilar perforant path associated

IS3 :

Interneuron-specific-III

LM/RAD :

Lacunosum-moleculare/radiatum

MPO :

Membrane potential oscillation

MS :

Medial septum

N/A :

Not applicable

NGL :

Neurogliaform

O/A :

Oriens/alveus

O–LM :

Oriens–lacunosum/pyramidale

PV+ :

Parvalbumin positive

SCA :

Schaffer collateral associated

SOM+ :

Somatostatin positive

SP :

Stratum pyramidale

VGC :

Voltage-gated channel

References

  • Andersen P, Morris R, Amaral D, Bliss T, O’Keefe J (2006) The hippocampus book, 1st edn. Oxford University Press, New York

    Book  Google Scholar 

  • Ascoli GA, Alonso-Nanclares L, Anderson SA, Barrionuevo G, Benavides-Piccione R, Burkhalter A, Fairén A et al (2008) Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nat Rev Neurosci 9(7):557–568

    Article  CAS  Google Scholar 

  • Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56

    Article  CAS  Google Scholar 

  • Ben-Ari Y, Represa A (2009) Hippocampus: organization, maturation, and operation in cognition and pathological conditions. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience. Springer, Berlin/Heidelberg, pp 1845–1850

    Chapter  Google Scholar 

  • Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I (2016) Interneuronal mechanisms of hippocampal theta oscillation in a full-scale model of the rodent CA1 circuit. eLife 23(5):e18566

    Article  Google Scholar 

  • Brunel N, Hakim V (2009) Neuronal dynamics. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 6099–6116

    Chapter  Google Scholar 

  • Brunel N, Hansel D (2006) How noise affects the synchronization properties of recurrent networks of inhibitory neurons. Neural Comput 18(5):1066–1110

    Article  Google Scholar 

  • Chamberland S, Topolnik L (2012) Inhibitory control of hippocampal inhibitory neurons. Front Neurosci 6:165. https://doi.org/10.3389/fnins.2012.00165

    Article  PubMed  PubMed Central  Google Scholar 

  • Cutsuridis V, Hasselmo M (2012) GABAergic contributions to gating, timing, and phase precession of hippocampal neuronal activity during theta oscillations. Hippocampus 22(7):1597–1621

    Article  CAS  Google Scholar 

  • Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20(3):423–446

    CAS  PubMed  Google Scholar 

  • DeFelipe J, López-Cruz PL, Benavides-Piccione R, Bielza C, Larrañaga P, Anderson S, Ascoli GA et al (2013) New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat Rev Neurosci 14(3):202–216

    Article  CAS  Google Scholar 

  • Ferguson K, Huh CYL, Amilhon B, Williams S, Skinner FK (2013) Experimentally constrained CA1 fast-firing parvalbumin-positive interneuron network models exhibit sharp transitions into coherent high frequency rhythms. Front Comput Neurosci 7:144. https://doi.org/10.3389/fncom.2013.00144

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson KA, Huh CYL, Amilhon B, Manseau F, Williams S, Skinner FK (2015) Network models provide insights into how oriens-lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations. Front Syst Neurosci 9:110

    Article  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6(4):347–470

    Article  CAS  Google Scholar 

  • Freund T, Kali S (2008) Interneurons. Scholarpedia 3(9):4720. https://doi.org/10.4249/scholarpedia.4720

    Article  Google Scholar 

  • Fuentealba P, Begum R, Capogna M, Jinno S, Márton LF, Csicsvari J, Klausberger T et al (2008) Ivy cells: a population of nitric-oxide-producing, slow-spiking GABAergic neurons and their involvement in hippocampal network activity. Neuron 57(6):917–929

    Article  CAS  Google Scholar 

  • Gloveli T, Dugladze T, Rotstein HG, Traub RD, Monyer H, Heinemann U, Kopell NJ et al (2005) Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proc Natl Acad Sci U S A 102(37):13295–13300

    Article  CAS  Google Scholar 

  • Guet-McCreight A, Camiré O, Topolnik L, Skinner FK (2016) Using a semi-automated strategy to develop multi-compartment models that predict biophysical properties of interneuron-specific 3 (IS3) cells in hippocampus. eNeuro 3(4):e0087-16.2016 1–26

    Google Scholar 

  • Hajós M, Hoffmann WE, Orbán G, Kiss T, Érdi P (2004) Modulation of septo-hippocampal θ activity by GABAA receptors: an experimental and computational approach. Neuroscience 126(3):599–610

    Article  Google Scholar 

  • Hu H, Martina M, Jonas P (2010) Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science (New York, NY) 327(5961):52–58

    Article  CAS  Google Scholar 

  • Jinno S, Klausberger T, Marton LF, Dalezios Y, Roberts JDB, Fuentealba P, Somogyi P et al (2007) Neuronal diversity in GABAergic long-range projections from the hippocampus. J Neurosci 27(33):8790–8804

    Article  CAS  Google Scholar 

  • Kepecs A, Fishell G (2014) Interneuron cell types are fit to function. Nature 505(7483):318–326

    Article  CAS  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321(5885):53–57

    Article  CAS  Google Scholar 

  • Krook-Magnuson E, Armstrong C, Oijala M, Soltesz I (2013) On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat Commun 4:1376. https://doi.org/10.1038/ncomms2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kunec S, Hasselmo ME, Kopell N (2005) Encoding and retrieval in the CA3 region of the hippocampus: a model of theta-phase separation. J Neurophysiol 94(1):70–82

    Article  Google Scholar 

  • Lawrence JJ, Saraga F, Churchill JF, Statland JM, Travis KE, Skinner FK, McBain CJ (2006) Somatodendritic Kv7/KCNQ/M channels control interspike interval in hippocampal interneurons. J Neurosci 26(47):12325–12338

    Article  CAS  Google Scholar 

  • Leão RN, Mikulovic S, Leão KE, Munguba H, Gezelius H, Enjin A, Kullander K et al (2012) OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat Neurosci 15(11):1524–1530

    Article  Google Scholar 

  • Ledoux E, Brunel N (2011) Dynamics of networks of excitatory and inhibitory neurons in response to time-dependent inputs. Front Comput Neurosci 5:25. https://doi.org/10.3389/fncom.2011.00025

    Article  PubMed  PubMed Central  Google Scholar 

  • McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2(1):11–23

    Article  CAS  Google Scholar 

  • Morgan RJ, Soltesz I (2008) Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures. Proc Natl Acad Sci U S A 105(16):6179–6184

    Article  CAS  Google Scholar 

  • Morgan RJ, Soltesz I (2010) Microcircuit model of the dentate gyrus in epilepsy. In: Cutsuridis V, Graham B, Cobb S, Vida I (eds) Hippocampal microcircuits. Springer, New York, pp 495–525

    Chapter  Google Scholar 

  • Morin F, Haufler D, Skinner FK, Lacaille J-C (2010) Characterization of voltage-gated K+ currents contributing to subthreshold membrane potential oscillations in hippocampal CA1 interneurons. J Neurophysiol 103(6):3472–3489

    Article  CAS  Google Scholar 

  • Neymotin SA, Lazarewicz MT, Sherif M, Contreras D, Finkel LH, Lytton WW (2011) Ketamine disrupts theta modulation of gamma in a computer model of hippocampus. J Neurosci 31(32):11733–11743

    Article  CAS  Google Scholar 

  • Nörenberg A, Hu H, Vida I, Bartos M, Jonas P (2010) Distinct nonuniform cable properties optimize rapid and efficient activation of fast-spiking GABAergic interneurons. Proc Natl Acad Sci U S A 107(2):894–899

    Article  Google Scholar 

  • Orbán G, Kiss T, Erdi P (2006) Intrinsic and synaptic mechanisms determining the timing of neuron population activity during hippocampal theta oscillation. J Neurophysiol 96(6):2889–2904

    Article  Google Scholar 

  • Rotstein HG, Pervouchine DD, Acker CD, Gillies MJ, White JA, Buhl EH, Kopell N et al (2005) Slow and fast inhibition and an H-current interact to create a theta rhythm in a model of CA1 interneuron network. J Neurophysiol 94(2):1509–1518

    Article  Google Scholar 

  • Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93(1):437–453

    Article  Google Scholar 

  • Saraga F, Skinner FK (2002) Dynamics and diversity in interneurons: a model exploration with slowly inactivating potassium currents. Neuroscience 113(1):193–203

    Article  CAS  Google Scholar 

  • Saraga F, Wu CP, Zhang L, Skinner FK (2003) Active dendrites and spike propagation in multi-compartment models of oriens-lacunosum/moleculare hippocampal interneurons. J Physiol 552.(Pt 3:673–689

    Article  CAS  Google Scholar 

  • Saraga F, Ng L, Skinner FK (2006) Distal gap junctions and active dendrites can tune network dynamics. J Neurophysiol 95(3):1669–1682

    Article  Google Scholar 

  • Shepherd GM (2003) Introduction to synaptic microcircuits. In: Shepherd GM (ed) The synaptic organization of the brain. Oxford University Press, New York, pp 1–38

    Google Scholar 

  • Skinner FK, Zhang L, Velazquez JLP, Carlen PL (1999) Bursting in inhibitory interneuronal networks: a role for gap-junctional coupling. J Neurophysiol 81(3):1274–1283

    Article  CAS  Google Scholar 

  • Sritharan D, Skinner FK (2012) Fluctuating inhibitory inputs promote reliable spiking at theta frequencies in hippocampal interneurons. Front Comput Neurosci 6:30. https://doi.org/10.3389/fncom.2012.00030

    Article  PubMed  PubMed Central  Google Scholar 

  • Tort ABL, Rotstein HG, Dugladze T, Gloveli T, Kopell NJ (2007) On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proc Natl Acad Sci U S A 104(33):13490–13495

    Article  CAS  Google Scholar 

  • Traub RD (1995) Model of synchronized population bursts in electrically coupled interneurons containing active dendritic conductances. J Comput Neurosci 2(4):283–289

    Article  CAS  Google Scholar 

  • Traub RD, Miles R (1995) Pyramidal cell-to-inhibitory cell spike transduction explicable by active dendritic conductances in inhibitory cell. J Comput Neurosci 2(4):291–298

    Article  CAS  Google Scholar 

  • Traub RD, Miles R, Buzsáki G (1992) Computer simulation of carbachol-driven rhythmic population oscillations in the CA3 region of the in vitro rat hippocampus. J Physiol 451:653–672

    Article  CAS  Google Scholar 

  • Tricoire L, Pelkey KA, Erkkila BE, Jeffries BW, Yuan X, McBain CJ (2011) A blueprint for the spatiotemporal origins of mouse hippocampal interneuron diversity. J Neurosci 31(30):10948–10970

    Article  CAS  Google Scholar 

  • Vida I (2010) Morphology of hippocampal neurons. In: Cutsuridis V, Graham B, Cobb S, Vida I (eds) Hippocampal microcircuits. Springer, New York, pp 27–67

    Chapter  Google Scholar 

  • Wallenstein GV, Hasselmo ME (1997) GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J Neurophysiol 78(1):393–408

    Article  CAS  Google Scholar 

  • Wang X-J (2002) Pacemaker neurons for the theta rhythm and their synchronization in the septohippocampal reciprocal loop. J Neurophysiol 87(2):889–900

    Article  Google Scholar 

  • Wang XJ, Buzsáki G (1996) Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. J Neurosci 16(20):6402–6413

    Article  CAS  Google Scholar 

  • White JA, Chow CC, Ritt J, Soto-Treviño C, Kopell N (1998) Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. J Comput Neurosci 5(1):5–16

    Article  CAS  Google Scholar 

  • White JA, Banks MI, Pearce RA, Kopell NJ (2000) Networks of interneurons with fast and slow γ-aminobutyric acid type A (GABAA) kinetics provide substrate for mixed gamma-theta rhythm. Proc Natl Acad Sci U S A 97(14):8128–8133

    Article  CAS  Google Scholar 

  • Wulff P, Ponomarenko AA, Bartos M, Korotkova TM, Fuchs EC, Bähner F, Monyer H et al (2009) Hippocampal theta rhythm and its coupling with gamma oscillations require fast inhibition onto parvalbumin-positive interneurons. Proc Natl Acad Sci U S A 106(9):3561–3566

    Article  CAS  Google Scholar 

  • Zahid T, Skinner FK (2009) Predicting synchronous and asynchronous network groupings of hippocampal interneurons coupled with dendritic gap junctions. Brain Res 1262:115–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

FKS would like to thank NSERC of Canada for their support over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frances K. Skinner .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Skinner, F.K., Ferguson, K.A. (2018). Hippocampus, Model Inhibitory Cells. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_29-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_29-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7320-6

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Hippocampus, Model Inhibitory Cells
    Published:
    19 September 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_29-2

  2. Original

    Hippocampus, Model Inhibitory Cells
    Published:
    13 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_29-1