Skip to main content

Peripheral Nerve Interface Applications: Respiratory Pacing

Encyclopedia of Computational Neuroscience
  • 307 Accesses

Synonyms

Diaphragm pacing; Phrenic nerve pacing; Respiratory electrical stimulation

Definition

Respiratory pacing is a technique that uses patterned repetitive electrical stimulation to activate ventilatory muscles in order to increase airflow in the lungs. Respiratory pacing is usually used in cases of cervical spinal cord injury (SCI) where the connection between the respiratory drive centers and the respiratory nerves has been lost, though other disorders may also be candidates. Pacing may be delivered by peripheral nerve stimulation (typically the phrenic nerve that innervates the diaphragm), intramuscular stimulation (typically the thoracic diaphragm), or spinal cord stimulation. Respiratory pacing is used as an alternative to mechanical ventilation which may cause trauma to the lungs and other respiratory and psychological complications.

Detailed Description

Background

Respiratory pacing provides a solution for individuals with chronic ventilatory insufficiency or those...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbas JJ, Triolo RJ (1997) Experimental evaluation of an adaptive feedforward controller for use in functional neuromuscular stimulation systems. IEEE Trans Rehabil Eng 5(1):12–22

    Article  CAS  PubMed  Google Scholar 

  • Aboussouan LS (2009) Mechanisms of exercise limitation and pulmonary rehabilitation for patients with neuromuscular disease. Chron Respir Dis 6(4):231–249

    CAS  PubMed  Google Scholar 

  • Anthony FDMD (1999) Diaphragm pacing in patients with spinal cord injury. Top Spinal Cord Inj Rehabil 5(1):6–20

    Article  Google Scholar 

  • Crago PE, Peckham PH et al (1980) Modulation of muscle force by recruitment during intramuscular stimulation. IEEE Trans Biomed Eng 27(12):679–684

    Article  CAS  PubMed  Google Scholar 

  • Dean JB, Nattie EE (2010) Central CO2 chemoreception in cardiorespiratory control. J Appl Physiol (1985) 108(4):976–978

    Article  Google Scholar 

  • DiMarco AF (2005) Restoration of respiratory muscle function following spinal cord injury. Review of electrical and magnetic stimulation techniques. Respir Physiol Neurobiol 147(2–3):273–287

    Article  PubMed  Google Scholar 

  • DiMarco AF (2009) Phrenic nerve stimulation in patients with spinal cord injury. Respir Physiol Neurobiol 169(2):200–209

    Article  PubMed  Google Scholar 

  • DiMarco AF, Onders RP et al (2002) Phrenic nerve pacing in a tetraplegic patient via intramuscular diaphragm electrodes. Am J Respir Crit Care Med 166(12 Pt 1):1604–1606

    Article  PubMed  Google Scholar 

  • DiMarco AF, Takaoka Y et al (2005) Combined intercostal and diaphragm pacing to provide artificial ventilation in patients with tetraplegia. Arch Phys Med Rehabil 86(6):1200–1207

    Article  PubMed  Google Scholar 

  • Durfee WK, Palmer KI (1994) Estimation of force-activation, force-length, and force-velocity properties in isolated, electrically stimulated muscle. IEEE Trans Biomed Eng 41(3):205–216

    Article  CAS  PubMed  Google Scholar 

  • Fodstad H (1987) The Swedish experience in phrenic nerve stimulation. Pacing Clin Electrophysiol 10(1 Pt 2):246–251

    Article  CAS  PubMed  Google Scholar 

  • Glenn WW (1978) Diaphragm pacing: present status. Pacing Clin Electrophysiol 1(3):357–370

    Article  CAS  PubMed  Google Scholar 

  • Glenn WW, Hageman JH et al (1964) Electrical stimulation of excitable tissue by radio-frequency transmission. Ann Surg 160:338–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glenn WW, Hogan JF et al (1984) Ventilatory support by pacing of the conditioned diaphragm in quadriplegia. N Engl J Med 310(18):1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Guyenet PG, Stornetta RL et al (2010) Central respiratory chemoreception. J Comp Neurol 518(19):3883–3906

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jaeger RJ, Turba RM et al (1993) Cough in spinal cord injured patients: comparison of three methods to produce cough. Arch Phys Med Rehabil 74(12):1358–1361

    Article  CAS  PubMed  Google Scholar 

  • Jarosz R, Littlepage MM et al (2012) Functional electrical stimulation in spinal cord injury respiratory care. Top Spinal Cord Inj Rehabil 18(4):315–321

    Article  PubMed Central  PubMed  Google Scholar 

  • Kowalski KE, Hsieh YH et al (2013) Diaphragm activation via high frequency spinal cord stimulation in a rodent model of spinal cord injury. Exp Neurol 247:689–693

    Article  PubMed  Google Scholar 

  • Krause JS, Devivo MJ et al (2004) Health status, community integration, and economic risk factors for mortality after spinal cord injury. Arch Phys Med Rehabil 85(11):1764–1773

    Article  PubMed  Google Scholar 

  • Lee BB, Boswell-Ruys C et al (2008) Surface functional electrical stimulation of the abdominal muscles to enhance cough and assist tracheostomy decannulation after high-level spinal cord injury. J Spinal Cord Med 31(1):78–82

    PubMed Central  PubMed  Google Scholar 

  • Lindsey BG, Rybak IA et al (2012) Computational models and emergent properties of respiratory neural networks. Compr Physiol 2(3):1619–1670

    PubMed Central  PubMed  Google Scholar 

  • McPhedran AM, Wuerker RB et al (1965) Properties of motor units in a heterogeneous pale muscle (M. Gastrocnemius) of the cat. J Neurophysiol 28:85–99

    CAS  PubMed  Google Scholar 

  • Morgan JA, Ginsburg ME et al (2003) Advanced thoracoscopic procedures are facilitated by computer-aided robotic technology. Eur J Cardiothorac Surg 23(6):883–887; discussion 887

    Article  PubMed  Google Scholar 

  • Nochomovitz ML, Hopkins M et al (1984) Conditioning of the diaphragm with phrenic nerve stimulation after prolonged disuse. Am Rev Respir Dis 130(4):685–688

    CAS  PubMed  Google Scholar 

  • Nochomovitz ML, Peterson DK et al (1988) Electrical activation of the diaphragm. Clin Chest Med 9(2):349–358

    CAS  PubMed  Google Scholar 

  • Onders R (2007) Pacing for unilateral diaphragm paralysis. In: Ferguson M (ed) Difficult decisions in thoracic surgery. Springer, London, pp 365–370

    Chapter  Google Scholar 

  • Onders RP (2012) Functional electrical stimulation: restoration of respiratory function. Handb Clin Neurol 109:275–282

    Article  PubMed  Google Scholar 

  • Onders RP, Aiyar H et al (2004a) Characterization of the human diaphragm muscle with respect to the phrenic nerve motor points for diaphragmatic pacing. Am Surg 70(3):241–247; discussion 247

    PubMed  Google Scholar 

  • Onders RP, Dimarco AF et al (2004b) Mapping the phrenic nerve motor point: the key to a successful laparoscopic diaphragm pacing system in the first human series. Surgery 136(4):819–826

    Article  PubMed  Google Scholar 

  • Onders RP, DiMarco AF et al (2005) The learning curve for investigational surgery: lessons learned from laparoscopic diaphragm pacing for chronic ventilator dependence. Surg Endosc 19(5):633–637

    Article  CAS  PubMed  Google Scholar 

  • Sarnoff SJ, Maloney JV Jr et al (1950) Electrophrenic respiration in acute bulbar poliomyelitis; its use in management of respiratory irregularities. J Am Med Assoc 143(16):1383–1390

    Article  CAS  PubMed  Google Scholar 

  • Scherer K, Bedlack RS (2012) Diaphragm pacing in amyotrophic lateral sclerosis: a literature review. Muscle Nerve 46(1):1–8

    Article  PubMed  Google Scholar 

  • Shaul DB, Danielson PD et al (2002) Thoracoscopic placement of phrenic nerve electrodes for diaphragmatic pacing in children. J Pediatr Surg 37(7):974–978; discussion 974–978

    Article  PubMed  Google Scholar 

  • Shavelle RM, DeVivo MJ et al (2006) Long-term survival of persons ventilator dependent after spinal cord injury. J Spinal Cord Med 29(5):511–519

    PubMed Central  PubMed  Google Scholar 

  • Tryfon S, Kontakiotis T et al (2001) Hering-Breuer reflex in normal adults and in patients with chronic obstructive pulmonary disease and interstitial fibrosis. Respiration 68(2):140–144

    Article  CAS  PubMed  Google Scholar 

  • Vanderlinden RG, Epstein SW et al (1988) Management of chronic ventilatory insufficiency with electrical diaphragm pacing. Can J Neurol Sci 15(1):63–67

    CAS  PubMed  Google Scholar 

  • Venkatasubramanian G, Jung R et al (2006) Functional electrical stimulation. In: Webster JG (ed) Encyclopedia of medical devices and instrumentation. Wiley, New York, pp 347–366

    Google Scholar 

  • Zimmer MB, Nantwi K et al (2007) Effect of spinal cord injury on the respiratory system: basic research and current clinical treatment options. J Spinal Cord Med 30(4):319–330

    PubMed Central  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Hillen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Hillen, B., Jung, R. (2014). Peripheral Nerve Interface Applications: Respiratory Pacing. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_205-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_205-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Peripheral Nerve Interface Applications, Respiratory Pacing
    Published:
    30 July 2020

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_205-2

  2. Original

    Peripheral Nerve Interface Applications: Respiratory Pacing
    Published:
    25 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_205-1