Skip to main content

Stochastic Simulators

Encyclopedia of Computational Neuroscience
  • 266 Accesses

Definition

A stochastic simulator for reaction–diffusion systems is a computer simulation tool that uses the Monte Carlo method to generate the time evolution of a spatially inhomogeneous chemically reacting system. The stochastic simulation algorithm (SSA) formulated by Dan Gillespie in 1976 numerically simulates the time evolution of a well-stirred chemically reacting system in a thermal equilibrium by defining the state of the system to be the integer numbers of molecular populations. The SSA has been extended to incorporate diffusion, usually called the spatial SSA, by dividing the spatial domain into a collection of well-stirred subvolumes and treating diffusion between neighboring subvolumes as a set of first-order reactions. This entry focuses on stochastic simulators that use the spatial SSA.

Detailed Description

The small numbers and heterogeneous distribution of molecular species in biological cells give rise to stochastic variations in intracellular microdomains and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alves R, Antunes F, Salvador A (2006) Tools for kinetic modeling of biochemical networks. Nat Biotech 24:667–672

    Article  CAS  Google Scholar 

  • Ander M, Beltrao P, Di Ventura B, Ferkinghoff-Borg J, Foglierini M et al (2004) SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. Syst Biol 1:129–138

    Article  CAS  Google Scholar 

  • Andrews SS, Arkin AP (2006) Simulating cell biology. Curr Biol 16:R523–R527

    Article  PubMed  CAS  Google Scholar 

  • Andrews S, Dinh T, Arkin A (2009) Stochastic models of biological processes. In: Meyers RA (ed) Encyclopedia of complexity and systems science. Springer, New York, pp 8730–8749

    Chapter  Google Scholar 

  • Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with smoldyn 2.1. PLoS Comput Biol 6:e1000705

    Article  PubMed  PubMed Central  Google Scholar 

  • Antunes G, De Schutter E (2012) A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression. J Neurosci 32:9288–9300

    Article  PubMed  CAS  Google Scholar 

  • Azuma R, Kitagawa T, Kobayashi H, Konagaya A (2006) Particle simulation approach for subcellular dynamics and interactions of biological molecules. BMC Bioinform 7:S20

    Article  Google Scholar 

  • Baras F, Mansour MM (1996) Reaction–diffusion master equation: a comparison with microscopic simulations. Phys Rev E 54:6139

    Article  CAS  Google Scholar 

  • Bernstein D (2005) Simulating mesoscopic reaction–diffusion systems using the Gillespie algorithm. Phys Rev E 71:041103

    Article  Google Scholar 

  • Bhalla US (2004a) Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys J 87:733–744

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bhalla US (2004b) Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys J 87:745–753

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Boulianne L, Al Assaad S, Dumontier M, Gross W (2008) GridCell: a stochastic particle-based biological system simulator. BMC Syst Biol 2:66

    Article  PubMed  PubMed Central  Google Scholar 

  • Burrage K, Tian T, Burrage P (2004) A multi-scaled approach for simulating chemical reaction systems. Prog Biophys Mol Biol 85:217–234

    Article  PubMed  CAS  Google Scholar 

  • Cao Y, Gillespie DT, Petzold LR (2005a) The slow-scale stochastic simulation algorithm. J Chem Phys 122:014116

    Article  Google Scholar 

  • Cao Y, Gillespie DT, Petzold LR (2005b) Avoiding negative populations in explicit Poisson tau-leaping. J Chem Phys 123:054104

    Article  PubMed  Google Scholar 

  • Cao Y, Gillespie DT, Petzold LR (2006) Efficient step size selection for the tau-leaping simulation method. J Chem Phys 124:044109

    Article  PubMed  Google Scholar 

  • Chatterjee A, Vlachos D (2007) An overview of spatial microscopic and accelerated kinetic Monte Carlo methods. J Comput Aided Mater Des 14:253–308

    Article  Google Scholar 

  • Dobrzynski M, Rodriguez JV, Kaandorp JA, Blom JG (2007) Computational methods for diffusion-influenced biochemical reactions. Bioinformatics 23:1969–1977

    Article  PubMed  CAS  Google Scholar 

  • Drawert B, Lawson MJ, Petzold L, Khammash M (2010) The diffusive finite state projection algorithm for efficient simulation of the stochastic reaction–diffusion master equation. J Chem Phys 132:074101

    Article  PubMed  PubMed Central  Google Scholar 

  • Drawert B, Engblom S, Hellander A (2012) URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries. BMC Syst Biol 6:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Elf J, Ehrenberg M (2004) Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst Biol 1:230–236

    Article  CAS  Google Scholar 

  • Erban R, Chapman SJ (2009) Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. Phys Biol 6:046001

    Article  PubMed  Google Scholar 

  • Fange D, Elf J (2006) Noise-induced min phenotypes in E. coli. PLoS Comput Biol 2:e80

    Article  PubMed  PubMed Central  Google Scholar 

  • Fange D, Berg OG, Sjöberg P, Elf J (2010) Stochastic reaction–diffusion kinetics in the microscopic limit. Proc Natl Acad Sci 107:19820–19825

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fange D, Mahmutovic A, Elf J (2012) MesoRD 1.0: Stochastic reaction–diffusion simulations in the microscopic limit. Bioinformatics 28:3155–3157

    Article  PubMed  CAS  Google Scholar 

  • Ferm L, Hellander A, Lötstedt P (2010) An adaptive algorithm for simulation of stochastic reaction–diffusion processes. J Comput Phys 229:343–360

    Article  CAS  Google Scholar 

  • Gibson MA, Bruck J (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J Phys Chem A 104:1876–1889

    Article  CAS  Google Scholar 

  • Gillespie DT (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J Comput Phys 22:403–434

    Article  CAS  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    Article  CAS  Google Scholar 

  • Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems. J Chem Phys 115:1716

    Article  CAS  Google Scholar 

  • Gillespie DT (2007) Stochastic simulation of chemical kinetics. Annu Rev Phys Chem 58:35–55

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DT, Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation. J Chem Phys 119:8229

    Article  CAS  Google Scholar 

  • Hanusse P, Blanche A (1981) A Monte Carlo method for large reaction–diffusion systems. J Chem Phys 74:6148

    Article  CAS  Google Scholar 

  • Harris LA, Clancy P (2006) A “partitioned leaping” approach for multiscale modeling of chemical reaction dynamics. J Chem Phys 125:144107

    Article  PubMed  Google Scholar 

  • Haseltine EL, Rawlings JB (2002) Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J Chem Phys 117:6959

    Article  CAS  Google Scholar 

  • Haseltine EL, Rawlings JB (2005) On the origins of approximations for stochastic chemical kinetics. J Chem Phys 123:164115

    Article  PubMed  Google Scholar 

  • Hattne J, Fange D, Elf J (2005) Stochastic reaction–diffusion simulation with MesoRD. Bioinformatics 21:2923–2924

    Article  PubMed  CAS  Google Scholar 

  • Hepburn I, Chen W, Wils S, De Schutter E (2012) STEPS: efficient simulation of stochastic reaction–diffusion models in realistic morphologies. BMC Syst Biol 6:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaacson S (2009) The reaction–diffusion master equation as an asymptotic approximation of diffusion to a small target. SIAM J Appl Math 70:77–111

    Article  Google Scholar 

  • Isaacson SA, Peskin CS (2006) Incorporating diffusion in complex geometries into stochastic chemical kinetics simulations. SIAM J Sci Comput 28:47–74

    Article  Google Scholar 

  • Iyengar KA, Harris LA, Clancy P (2010) Accurate implementation of leaping in space: the spatial partitioned-leaping algorithm. J Chem Phys 132:094101

    Article  PubMed  Google Scholar 

  • Kim M, Park AJ, Havekes R, Chay A, Guercio LA et al (2011) Colocalization of protein kinase A with adenylyl cyclase enhances protein kinase A activity during Induction of long-lasting long-term-potentiation. PLoS Comput Biol 7:e1002084

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim B, Hawes SL, Gillani F, Wallace LJ, Blackwell KT (2013) Signaling pathways involved in striatal synaptic plasticity are sensitive to temporal pattern and exhibit spatial specificity. PLoS Comput Biol 9:e1002953

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Koh W, Blackwell KT (2011) An accelerated algorithm for discrete stochastic simulation of reaction–diffusion systems using gradient-based diffusion and tau-leaping. J Chem Phys 134:154103

    Article  PubMed  PubMed Central  Google Scholar 

  • Koh W, Blackwell KT (2012) Improved spatial direct method with gradient-based diffusion to retain full diffusive fluctuations. J Chem Phys 137:154111

    Article  PubMed  PubMed Central  Google Scholar 

  • Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11:239–251

    Article  PubMed  Google Scholar 

  • Lampoudi S, Gillespie DT, Petzold LR (2009) The multinomial simulation algorithm for discrete stochastic simulation of reaction–diffusion systems. J Chem Phys 130:094104

    Article  PubMed  PubMed Central  Google Scholar 

  • Le Novere N, Shimizu TS (2001) STOCHSIM: modelling of stochastic biomolecular processes. Bioinformatics 17:575–576

    Article  PubMed  Google Scholar 

  • Lemerle C, Di Ventura B, Serrano L (2005) Space as the final frontier in stochastic simulations of biological systems. FEBS Lett 579:1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Marquez-Lago TT, Burrage K (2007) Binomial tau-leap spatial stochastic simulation algorithm for applications in chemical kinetics. J Chem Phys 127:104101

    Article  PubMed  Google Scholar 

  • Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys 124:044104

    Article  PubMed  Google Scholar 

  • Oliveira RF, Terrin A, Di Benedetto G, Cannon RC, Koh W et al (2010) The role of type 4 phosphodiesterases in generating microdomains of cAMP: large scale stochastic simulations. PLoS One 5:e11725

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira RF, Kim M, Blackwell KT (2012) Subcellular location of PKA controls striatal plasticity: stochastic simulations in spiny dendrites. PLoS Comput Biol 8:e1002383

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Plimpton SJ, Sleproy A (2003) ChemCell: a particle-based model of protein chemistry and diffusion in microbial cells. Sandia National Laboratories technical report 2003–45

    Google Scholar 

  • Ramsey S, Orrell D, Bolouri H (2005) Dizzy: Stochastic simulation of large-scale genetic regulatory networks. J Bioinform Comput Biol 03:415–436

    Article  CAS  Google Scholar 

  • Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J Chem Phys 118:4999

    Article  CAS  Google Scholar 

  • Rao CV, Wolf DM, Arkin AP (2002) Control, exploitation and tolerance of intracellular noise. Nature 420:231–237

    Article  PubMed  CAS  Google Scholar 

  • Rathinam M, Petzold LR, Cao Y, Gillespie DT (2003) Stiffness in stochastic chemically reacting systems: the implicit tau-leaping method. J Chem Phys 119:12784

    Article  CAS  Google Scholar 

  • Resasco DC, Gao F, Morgan F, Novak IL, Schaff JC et al (2012) Virtual cell: computational tools for modeling in cell biology. Wiley Interdiscip Rev Syst Biol Med 4:129–140

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez JV, Kaandorp JA, Dobrzynski M, Blom JG (2006) Spatial stochastic modelling of the phosphoenolpyruvate-dependent phosphotransferase (PTS) pathway in Escherichia coli. Bioinformatics 22:1895–1901

    Article  PubMed  CAS  Google Scholar 

  • Rossinelli D, Bayati B, Koumoutsakos P (2008) Accelerated stochastic and hybrid methods for spatial simulations of reaction–diffusion systems. Chem Phys Lett 451:136–140

    Article  CAS  Google Scholar 

  • Shahrezaei V, Swain PS (2008) The stochastic nature of biochemical networks. Curr Opin Biotechnol 19:369–374

    Article  PubMed  CAS  Google Scholar 

  • Slepoy A, Thompson AP, Plimpton SJ (2008) A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J Chem Phys 128:205101

    Article  PubMed  Google Scholar 

  • Srivastava R, Haseltine EL, Mastny E, Rawlings JB (2011) The stochastic quasi-steady-state assumption: reducing the model but not the noise. J Chem Phys 134:154109

    Article  PubMed  PubMed Central  Google Scholar 

  • Stiles JR, Bartol TM Jr (2001) Monte Carlo methods for simulating realistic synaptic microphysiology using MCell. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 87–127

    Google Scholar 

  • Stundzia AB, Lumsden CJ (1996) Stochastic simulation of coupled reaction–diffusion processes. J Comput Phys 127:196–207

    Article  CAS  Google Scholar 

  • Takahashi K, Arjunan SNV, Tomita M (2005) Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico. FEBS Lett 579:1783–1788

    Article  PubMed  CAS  Google Scholar 

  • Tian T, Burrage K (2004) Binomial leap methods for simulating stochastic chemical kinetics. J Chem Phys 121:10356

    Article  PubMed  CAS  Google Scholar 

  • Tolle D, Le Novere N (2010) Meredys, a multi-compartment reaction–diffusion simulator using multistate realistic molecular complexes. BMC Syst Biol 4:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 28:165–178

    Article  PubMed  CAS  Google Scholar 

  • Vigelius M, Meyer B (2012) Multi-dimensional, mesoscopic Monte Carlo simulations of inhomogeneous reaction-drift-diffusion systems on graphics-processing units. PLoS One 7:e33384

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vigelius M, Lane A, Meyer B (2011) Accelerating reaction–diffusion simulations with general-purpose graphics processing units. Bioinformatics 27:288–290

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonryull Koh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Koh, W., Blackwell, K.T. (2014). Stochastic Simulators. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_196-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_196-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Stochastic Simulators
    Published:
    13 December 2019

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_196-3

  2. Stochastic Simulators
    Published:
    19 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_196-2

  3. Original

    Stochastic Simulators
    Published:
    15 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_196-1