Encyclopedia of Social Network Analysis and Mining

Living Edition
| Editors: Reda Alhajj, Jon Rokne

Barycentric Discriminant Analysis

Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7163-9_110192-2

Synonyms

Glossary

Barycenter

The mean of the observations from a given category (also called center of gravity, center of mass, mean vector, or centroid)

Confidence interval

An interval encompassing a given proportion (e.g., 95%) of an estimate of a parameter (e.g., a mean)

Discriminant analysis

A technique whose goal is to assign observations to some predetermined categories

Discriminant factor scores

A linear combination of the variables of a data matrix. Used to assign observations to categories

Design matrix (aka group matrix)

In a group matrix, the rows represent observations and the columns represent a set of exclusive groups (i.e., an observation belongs to one and only one group). A value of 1 at the intersection of a row and a column indicates that the observation represented by the row belongs to the group represented by the column. A value of 0 at the intersection of a row and a column indicates that the...

This is a preview of subscription content, log in to check access

References

  1. Abdi H (2003) Multivariate analysis. In: Lewis-Beck M, Bryman A, Futing T (eds) Encyclopedia for research methods for the social sciences. Sage, Thousand Oaks, pp 699–702Google Scholar
  2. Abdi H (2007a) Singular value decomposition (SVD) and generalized singular value decomposition (GSVD). In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 907–912Google Scholar
  3. Abdi H (2007b) Discriminant correspondence analysis (dica). In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 270–275Google Scholar
  4. Abdi H, Williams LJ (2010a) Jackknife. In: Salkind NJ (ed) Encyclopedia of research design. Sage, Thousand OaksGoogle Scholar
  5. Abdi H, Williams LJ (2010b) Principal component analysis. Wiley Interdiscip Rev: Comput Stat 2:433–459CrossRefGoogle Scholar
  6. Abdi H, Williams LJ (2010c) Barycentric discriminant analysis (BADIA). In: Salkind NJ (ed) Encyclopedia of measurement and statistics. Sage, Thousand Oaks, pp 64–65Google Scholar
  7. Abdi H, Dunlop JP, Williams LJ (2009) How to compute reliability estimates and display confidence and tolerance intervals for pattern classifiers using the bootstrap and 3-way multidimensional scaling (DISTATIS). NeuroImage 45:89–95CrossRefGoogle Scholar
  8. Abdi H, Williams LJ, Beaton D, Posamentier M, Harris TS, Krishnan A, Devous MD (2012a) Analysis of regional cerebral blood flow data to discriminate among Alzheimer’s disease, fronto-temporal dementia, and elderly controls: a multi-block barycentric discriminant analysis (MUBADA) methodology. J Alzheimer Dis 31:s189–s201Google Scholar
  9. Abdi H, Williams LJ, Connolly AC, Gobbini MI, Dunlop JP, Haxby JV (2012b) Multiple subject Barycentric discriminant analysis (MUSUBADA): how to assign scans to categories without using spatial normalization. Comput Math Methods Med 2012:1–15.  https://doi.org/10.1155/2012/634165 MathSciNetMATHGoogle Scholar
  10. Abdi H, Williams LJ, Valentin D, Bennani-Dosse M (2012c) STATIS and DISTATIS: optimum multi-table principal component analysis and three way metric multidimensional scaling. Wiley Interdiscip Rev: Comput Stat 4:124–167CrossRefGoogle Scholar
  11. Abdi H, Williams LJ, Valentin D (2013) Multiple factor analysis: principal component analysis for multi-table and multi-block data sets. Wiley Interdiscip Rev: Comput Stat 5:149–179CrossRefGoogle Scholar
  12. Bastin C, Benzécri JP, Bourgarit C, Caze P (1982) Pratique de l’Analyse des Données. Dunod, Paris, pp 102–104Google Scholar
  13. Beaton D, Chin Fatt CR, Abdi H (2014) An ExPosition of multivariate analysis with the singular value decomposition in R. Comput Stat & Data Anal 72:176–189MathSciNetCrossRefGoogle Scholar
  14. Benzécri J-P (1977) Analyse discriminante et analyse factorielle. Les Cahiers de l’Analyse des Données 2:369–406Google Scholar
  15. Bergougnan D, Couraud C (1982) Pratique de la discrimination barycentrique. Les Cahiers de l’Analyse des Données 7:341–354Google Scholar
  16. Celeux P, Nakache JP (1994) Analyse discriminante sur variables qualitatives. Polytechnica, ParisMATHGoogle Scholar
  17. Chessel D, Mercier P (1993) Couplage de triplet statistiques et liaisons espèce-environnement. In: Lebreton JD, Asselain B (eds) Biométrie et Environnement. Dunod, Paris, pp 15–43Google Scholar
  18. Cioli C, Abdi H, Beaton D, Burnod Y, Mesmoudi S (2014) Human cortical gene expression and properties of functional networks. PLoS One 9(12):1–28CrossRefGoogle Scholar
  19. Diaconis P, Efron B (1983) Computer-intensive methods in statistics. Scientific American 248:116–130CrossRefGoogle Scholar
  20. Doledec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species- environment relationships. Freshw Biol 31:277–294CrossRefGoogle Scholar
  21. Dray S, Dufour AB (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22(4):1–20CrossRefGoogle Scholar
  22. Efron B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman & Hall, New YorkCrossRefMATHGoogle Scholar
  23. El Behi M, Sanson C, Bachelin C, Guillot-Noel L, Fransson J, Stankoff B, Maillart E, Sarrazin N, Guillemot V, Abdi H, Rebeix I, Fontaine B, Zujovic V (2017) Adaptive human immunity drives remyelination in a mouse model of demyelination. Brain 140(4):967–980CrossRefGoogle Scholar
  24. Gittins R (1980) Canonical analysis: a review with applications in ecology. Springer Verlag, New YorkMATHGoogle Scholar
  25. Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, LondonMATHGoogle Scholar
  26. Horst P (1961) Relations among m sets of measures. Psychometrika 26:129–149MathSciNetCrossRefMATHGoogle Scholar
  27. Krishnan A, Williams LJ, McIntosh AR, Abdi H (2010) Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage 56:455–475CrossRefGoogle Scholar
  28. Krzanowski WJ, Radley D (1989) Nonparametric confidence and tolerance regions in canonical variate analysis. Biometrics 45:1163–1173MathSciNetCrossRefMATHGoogle Scholar
  29. Leclerc A (1976) Une etude de la relation entre une variable qualitative et un groupe de variables qualitatives. Int Stat Rev 44:241–248CrossRefMATHGoogle Scholar
  30. Manly BFJ (1997) Randomization, bootstrap, and Monte Carlo methods in biology, 2nd edn. Chapman & Hall, New YorkMATHGoogle Scholar
  31. Nakache J-P, Lorente P, Benzcri J-P, Chastang J-F (1977) Aspects pronostiques et therapeutiques de l’infarctus myocardique aigu compliqu d’une dfaillance sévère de la pompe cardiaque. Application des methodes de discrimination Les Cahiers de l’Analyse des Données 2:415–434Google Scholar
  32. Perriere G, Lobry JR, Thioulouse J (1996) Correspondence discriminant analysis: a multivariate method for comparing classes of protein and nucleic acid sequences. CABIOS 12:519–524Google Scholar
  33. Saporta G, Niang N (2006) Correspondence analysis and classification. In: Greenacre M, Blasius J (eds) Multiple correspondence analysis and related methods. Boca Raton, Chapman & Hall/CRC, pp 371–392CrossRefGoogle Scholar
  34. St. Laurent M, Abdi H, Burianová H, Grady GL (2011) Influence of aging on the neural correlates of autobiographical, episodic, and semantic memory retrieval. J Cogn Neurosci 23:4150–4163CrossRefGoogle Scholar
  35. Takane Y (2013) Constrained principal component analysis and related techniques. CRC Press, Boca RatonMATHGoogle Scholar
  36. Tucker LR (1958) An inter-battery method of factor analysis. Psychometrika 23:111–136MathSciNetCrossRefMATHGoogle Scholar
  37. Williams LJ, Abdi H, French R, Orange JB (2010) A tutorial on multi-block discriminant correspondence analysis (MUDICA): a new method for analyzing discourse data from clinical populations. J Speech Lang Hear Res 53:1372–1393CrossRefGoogle Scholar
  38. Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10:515–534CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.School of Behavioral and Brain SciencesThe University of Texas at DallasRichardsonUSA
  2. 2.BC Children’s Hospital MRI Research FacilityVancouverCanada
  3. 3.Centre d’Étude et de Recherche en Informatique et CommunicationsConservatoire National des Arts et MétiersParisFrance

Section editors and affiliations

  • Suheil Khoury
    • 1
  1. 1.American University of SharjahSharjahUnited Arab Emirates