Skip to main content

Biphasic Current Stimulator for Retinal Prosthesis

  • Living reference work entry
  • First Online:
Handbook of Biochips
  • 57 Accesses

Abstract

Inherited retinal diseases such as retinitis pigmentosa and age-related macular degeneration (AMD) target the retina at the back of the eyes resulting in severe and permanent blindness in millions worldwide. Patients suffering from such diseases experience poor quality of life due to vision loss. Fortunately, while the photoreceptors are damaged, rendering the eyes incapable of detecting incident light, the inner retinal networks remain intact. Recent technological advancements attempt to restore vision by implanting microelectronic retinal prostheses to detect incident light and produce visual information by electrically stimulating the nerves in the remaining network. This chapter reviews recent works and seeks to shine a light on effective design strategies, considerations, and future directions for realizing efficient and safe high-spatial-resolution retinal prosthetic SoCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Freeman DK, Eddington DK, Rizzo JF, Fried SI (2010) Selective activation of neuronal targets with sinusoidal electric stimulation. J Neurophysiol 104(5):2778–2791

    Article  Google Scholar 

  • Fried SI, Hsueh HA, Werblin FS (2006) A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol 95(2):970–978

    Article  Google Scholar 

  • Gosalia K, Weiland J, Humayun M, Lazzi G (2004) Thermal elevation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans Biomed Eng 51(8):1469–1477

    Article  Google Scholar 

  • Graf HG et al (2009) High dynamic range CMOS imager technologies for biomedical applications. IEEE J Solid State Circuits 44(1):281–289

    Article  Google Scholar 

  • Humayun MS et al (1999) Pattern electrical stimulation of the human retina. Vis Res 39(15):2569–2576

    Article  Google Scholar 

  • Humayun MS et al (2012) Interim results from the international trial of second sight’s visual prosthesis. Ophthalmology 119(24):779–788

    Article  Google Scholar 

  • Iniewski K (2008) VLSI circuits for biomedical applications. Artech House, Inc., Boston, pp 207–240

    Google Scholar 

  • Jensen RJ, Rizzo JF (2006) Thresholds for activation of rabbit retinal ganglion cells with a subretinal electrode. Exp Eye Res 83(2):367–373

    Article  Google Scholar 

  • Li J, Dong Y, Park JH et al (2021) Body-coupled power transmission and energy harvesting. Nat Electron 4:530–538. https://doi.org/10.1038/s41928-021-00592-y

  • Lo YK, Chen K, Gad P, Liu W (2013) A fully-integrated high-compliance voltage SoC for epi-retinal and neural prostheses. IEEE Trans Biomed Circuits Syst 7(6):761–772

    Article  Google Scholar 

  • Mathieson K et al (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6(6):391–397

    Article  Google Scholar 

  • Monge M et al (2013) A fully intraocular high-density self-calibrating Epiretinal prosthesis. IEEE Trans Biomed Circuits Syst 7(6):747–760

    Article  Google Scholar 

  • Muratore DG et al (2019) A data-compressive wired-OR readout for massively parallel neural recording. IEEE Trans Biomed Circuits Syst 13(6):1128–1140

    Article  Google Scholar 

  • Nanduri D et al (2012) Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation. Investig Ophthalmol Vis Sci 53(1):205–214

    Article  Google Scholar 

  • Ohta J et al (2006) Silicon LSI-based smart stimulators for retinal prosthesis: a flexible and extendable microchip-based stimulator. IEEE Eng Med Biol Mag 25(5):47–59

    Article  Google Scholar 

  • Palanker D, Vankov A, Huie P, Baccus S (2005) Design of a high-resolution optoelectronic retinal prosthesis. J Neural Eng 2(1):S105

    Article  Google Scholar 

  • Park JH et al (2020) 1225-channel neuromorphic retinal-prosthesis SoC with localized temperature-regulation. IEEE Trans Biomed Circuits Syst 14(6):1230–1240

    Article  Google Scholar 

  • Rothermel A et al (2009) A CMOS chip with active pixel array and specific test features for subretinal implantation. IEEE J Solid State Circuits 44(1):290–300

    Article  Google Scholar 

  • Sarpeshkar R (2011) Ultra low power bioelectronics neuromorphic electronics. Cambridge University Press

    Google Scholar 

  • Schütz H, Gambach S, Kaim H, Rothermel A (2017) Pixel array with 5×5 spatial highpass filter for a retinal implant. ESSCIRC 2017 – 43rd IEEE European solid state circuits conference, pp 63–66

    Google Scholar 

  • Shim S, Eom K, Jeong J, Kim SJ (2020a) Retinal prosthetic approaches to enhance visual perception for blind patients. Micromachines 11(5):1–26

    Google Scholar 

  • Shim S, Park JH, Kim SJ (2020b) Virtual electrodes generated by focused penta-polar current stimulation for neuromodulation. Micro Nano Lett 15(6):374–377

    Article  Google Scholar 

  • Taschwer A et al (2018) A charge balanced neural stimulator with 3.3 v to 49 v supply compliance and arbitrary programmable current pulse shapes. In: 2018 IEEE biomedical circuits and systems conference, BioCAS 2018 – proceedings, pp 0–3

    Google Scholar 

  • Viventi J et al (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14(12):1599–1605

    Article  Google Scholar 

  • Weitz AC et al (2015) Improving the spatial resolution of epiretinal implants by increasing stimulus pulse duration. Sci Transl Med 7(318):1–12

    Article  Google Scholar 

  • Wilke R et al (2011a) Spatial resolution and perception of patterns mediated by a subretinal 16-electrode array in patients blinded by hereditary retinal dystrophies. Investig Ophthalmol Vis Sci 52(8):5995–6003

    Article  Google Scholar 

  • Wilke RGH et al (2011b) Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants. J Neural Eng 8(4):046016. http://stacks.iop.org/1741-2552/8/i=4/a=046016

    Article  Google Scholar 

  • Wu CY et al (2020) CMOS 256-pixel/480-pixel photovoltaic-powered subretinal prosthetic chips with wide image dynamic range and bi/four-directional sharing electrodes and their ex vivo experimental validations with mice. IEEE Trans Circuits Syst I: Regular Papers 67(10):3273–3283

    Article  Google Scholar 

  • Zrenner E (2013) Fighting blindness with microelectronics. Sci Transl Med 5(210):210ps16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerald Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Park, J.H., Wu, H., Tan, J.S.Y., Yoo, J. (2021). Biphasic Current Stimulator for Retinal Prosthesis. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_70-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_70-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6623-9

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics