Skip to main content

Adiabatic Electrode Stimulator

  • Living reference work entry
  • First Online:
Handbook of Biochips
  • 352 Accesses

Abstract

This chapter discusses neural stimulator circuits, focusing on the power consumed in such circuits. The basis of neural communication, the action potential, involves the movement of ions across the nerve membrane, and externally applied electrical currents create electric fields that can modulate that ion movement to induce action potentials. These currents are generally applied by a pulsed current source circuit, but these circuits waste a large amount of electrical power. An architecture is put forth here that uses a series of stepped voltage sources to drive charge onto an electrode in a manner similar to that used in adiabatic digital circuits. A sample system is described that creates five voltage supplies on capacitors from a single secondary telemetry coil voltage. Test results from this system show a power reduction of 53 % compared to a current source using the same chip voltage supplies and a power reduction of 66 % compared to a current source using the lowest reported voltage supplies for the same type of electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Athas WC, Koller JG, Svensson LJ (1994) An energy-efficient CMOS line driver using adiabatic switching. In: Proceedings of the 4th great lakes symposium. VLSI Design Automation of High Performance VLSI Systems, pp 196–199

    Google Scholar 

  • Bazes M (1991) Two novel fully complementary self-biased CMOS differential amplifiers. IEEE J Solid-State Circ 26(2):165–168

    Article  Google Scholar 

  • Beebe X, Rose TL (1988) Charge injection limits of activated iridium oxide electrodes with 0.2 ms pulses in bicarbonate buffered saline. IEEE Trans Biomed Eng 35(6):494–495

    Article  Google Scholar 

  • Chen K, Lo Y, Yang Z, Weiland J, Humayun MS, Liu W (2013) A system verification platform for high-density epiretinal prostheses. IEEE Trans Biomed Circ Syst 7(3):326–337

    Article  Google Scholar 

  • Cogan S (2006) In vivo and in vitro differences in the charge-injection and electrochemical properties of iridium oxide electrodes. In: Proceedings of the IEEE international conference of the Engineering in Medicine and Biology Society, pp 882–885

    Google Scholar 

  • Dickinson AG, Denker JS (1994) Adiabatic dynamic logic. In: Proceedings of the IEEE Custom Integrated Circuits Conference, pp 282–285

    Google Scholar 

  • Fried SI, Hsueh HA, Werblin FS (2006) A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation. J Neurophysiol 95(2):970–978

    Article  Google Scholar 

  • Gorman PH, Mortimer JT (1983) The effect of stimulus parameters on the recruitment characteristics of direct nerve stimulation. IEEE Trans Biomed Eng 30:407–414

    Article  Google Scholar 

  • Gosalia K, Weiland J, Humayun M, Lazzi G (2004) Thermal evaluation in the human eye and head due to the operation of a retinal prosthesis. IEEE Trans Biomed Eng 51(8):1469–1477

    Article  Google Scholar 

  • Hallum LE, Dagnelie G, Suaning GJ, Lovell NH (2007) Simulating auditory and visual sensorineural prostheses: a comparative review. J Neural Eng 4:S58–S71

    Article  Google Scholar 

  • Humayun MS, Dorn JD, da Cruz L, Dagnelie G, Sahel J-A, Stanga PE, Cideciyan AV, Duncan JL, Eliott D, Filley E, Ho AC, Santos A, Safran AB, Arditi A, Del Priore LV, Greenberg RJ (2012) Interim results from the international trial of Second Sight’s visual prosthesis. Am Acad Ophthalmol 119(4):779–788

    Google Scholar 

  • Jensen RJ, Ziv OR, Rizzo JF (2005) Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode. J Neural Eng 2(1):S16–S21

    Article  Google Scholar 

  • Jia H, Cheng X, Wang X, Kumar P, Shen ZJ (2008) A novel monolithic self-synchronized rectifier. In: Proceedings of the IEEE Applied Power Electronics Conference and Exhibition, pp 907–912

    Google Scholar 

  • Kelly SK (2004) A system for efficient neural stimulation with energy recovery. Dept. Electrical Eng. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Kelly SK, Wyatt JL (2011) A power-efficient neural tissue stimulator with energy recovery. IEEE Trans Biomed Circ Syst 5(1):20–29

    Article  Google Scholar 

  • Kelly SK, Shire DB, Chen J, Doyle P, Gingerich MD, Cogan SF, Drohan W, Behan S, Theogarajan L, Wyatt JL, Rizzo JF (2011) A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng 58(11):3197–3205

    Article  Google Scholar 

  • Kelly SK, Shire DB, Chen J, Gingerich MD, Cogan SF, Drohan WA, Ellersick W, Krishnan A, Behan S, Wyatt JL, Rizzo JF (2013) Developments on the Boston 256-channel retinal implant. In: IEEE international conference on Multimedia and Expo, MAP4VIP workshop, pp 1–6

    Google Scholar 

  • Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traites comme une polarization. J Physiol Paris 9:622–635

    Google Scholar 

  • McCreery DB, Agnew WF, Yuen TGH, Bullara L (1990) Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Trans Biomed Eng 37(10):996–1001

    Article  Google Scholar 

  • Merrill DR (2010) The electrochemistry of charge injection at the electrode/tissue interface. Implantable Neural Prostheses 2: Techniques and Engineering Approaches. In: Zhou DD, Greenbaum E (eds). Springer

    Google Scholar 

  • MeVay ACH, Sarpeshkar R (2003) Predictive comparators with adaptive control. IEEE Trans Circ Syst II Analog Digit Sig Process 50(9):579–588

    Article  Google Scholar 

  • Pan H, Liang YC, Oruganti R (1999) Design of a smart power synchronous rectifier. IEEE Trans Power Electron 14(2):308–315

    Article  Google Scholar 

  • Rizzo JF, Wyatt JL, Loewenstein J, Kelly SK, Shire DB (2003a) Methods for acute electrical stimulation of retina with microelectrode arrays and measurement of perceptual thresholds in humans. Invest Ophthalmol Vis Sci 44(12):5355–5361

    Article  Google Scholar 

  • Rizzo JF, Wyatt JL, Loewenstein J, Kelly SK, Shire DB (2003b) Perceptual efficacy of electrical stimulation of human retina with a microelectrode array during short-term surgical trials. Investig Ophthalmol Vis Sci 44(12):5362–5369

    Article  Google Scholar 

  • Testerman RL, Rise MT, Stypulkowski PH (2006) Electrical stimulation as therapy for neurological disorders. IEEE Eng Med Biol Mag 25:74–78

    Article  Google Scholar 

  • Weiss TF (1996) Cellular biophysics, vol. 2: electrical properties. MIT Press, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shawn K. Kelly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science Business Media New York (outside the USA)

About this entry

Cite this entry

Kelly, S.K. (2015). Adiabatic Electrode Stimulator. In: Sawan, M. (eds) Handbook of Biochips. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6623-9_19-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6623-9_19-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6623-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics