Skip to main content

Receptor-Interacting Protein Kinase

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Signaling Molecules

Synonyms

Cell death protein RIP; Receptor-interacting protein 1 (RIP1); Serine/threonine-protein kinase; CARD-containing interleukin-1 β-converting enzyme-associated kinase; CARD-containing IL-1 β ICE-kinase RIP-like-interacting CLARP kinase; Receptor-interacting protein 2 (RIP2); Tyrosine-protein kinase; Ankyrin repeat domain-containing protein 3; PKC-δ-interacting protein kinase; Dual serine/threonine and tyrosine protein kinase (DSTY kinase): Dusty protein kinase; RIP-homologous kinase; Sugen kinase 496 (SgK496); KIAA1790; RIPK6; Dardarin; PARK8, RIPK7

Historical Background

Receptor-interacting protein kinases (RIPKs) fall under the category of serine/threonine protein kinases that not only share architectural organization but also have functional similarities. The significant and shared physiological functions of these kinases include cell death regulation, inflammation, and cell differentiation. These kinases are closely similar to interleukin-(IL)-1 receptor-associated kinases...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anand VS, Braithwaite SP. LRRK2 in Parkinson’s disease: biochemical functions. FEBS J. 2009;276(22):6428–35.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Haider K, Ponda M, Cariappa A, Rowitch D, Pillai S. Protein kinase C-associated kinase (PKK), a novel membrane-associated, ankyrin repeat-containing protein kinase. J Biol Chem. 2001;276(24):21737–44.

    Article  CAS  PubMed  Google Scholar 

  • Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature. 2002;416(6877):190–4.

    Article  CAS  PubMed  Google Scholar 

  • Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell. 2009;138(2):229–32.

    Article  CAS  PubMed  Google Scholar 

  • Greggio E, Lewis PA, van der Brug MP, Ahmad R, Kaganovich A, Ding J, et al. Mutations in LRRK2/dardarin associated with Parkinson disease are more toxic than equivalent mutations in the homologous kinase LRRK1. J Neurochem. 2007;102(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  • Haugarvoll K, Toft M, Ross OA, White LR, Aasly JO, Farrer MJ. Variants in the LRRK1 gene and susceptibility to Parkinson’s disease in Norway. Neurosci Lett. 2007;416(3):299–301.

    Article  CAS  PubMed  Google Scholar 

  • Holland P, Willis C, Kanaly S, Glaccum M, Warren A, Charrier K, et al. RIP4 is an ankyrin repeat-containing kinase essential for keratinocyte differentiation. Curr Biol. 2002;12(16):1424–8.

    Article  CAS  PubMed  Google Scholar 

  • Hsu H, Huang J, Shu HB, Baichwal V, Goeddel DV. TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 1996a;4(4):387–96.

    Article  CAS  PubMed  Google Scholar 

  • Hsu H, Shu HB, Pan MG, Goeddel DV. TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell. 1996b;84(2):299–308.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, McGann JC, Liu BY, Hannoush RN, Lill JR, Pham V, et al. Phosphorylation of dishevelled by protein kinase RIPK4 regulates Wnt signaling. Science. 2013;339(6126):1441–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inohara N, del Peso L, Koseki T, Chen S, Nunez G. RICK, a novel protein kinase containing a caspase recruitment domain, interacts with CLARP and regulates CD95-mediated apoptosis. J Biol Chem. 1998;273(20):12296–300.

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa K, Nara A, Matsumoto K, Hanafusa H. EGFR-dependent phosphorylation of leucine-rich repeat kinase LRRK1 is important for proper endosomal trafficking of EGFR. Mol Biol Cell. 2012;23(7):1294–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity. 1998;8(3):297–303.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi K, Inohara N, Hernandez LD, Galan JE, Nunez G, Janeway CA, et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature. 2002;416(6877):194–9.

    Article  CAS  PubMed  Google Scholar 

  • Krieg A, Correa RG, Garrison JB, Le Negrate G, Welsh K, Huang Z, et al. XIAP mediates NOD signaling via interaction with RIP2. Proc Natl Acad Sci U S A. 2009a;106(34):14524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krieg A, Le Negrate G, Reed JC. RIP2-beta: a novel alternative mRNA splice variant of the receptor interacting protein kinase RIP2. Mol Immunol. 2009b;46(6):1163–70.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence CP, Chow SC. FADD deficiency sensitises Jurkat T cells to TNF-alpha-dependent necrosis during activation-induced cell death. FEBS Lett. 2005;579(28):6465–72.

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Shank J, Cusson N, Kelliher MA. The kinase activity of Rip1 is not required for tumor necrosis factor-alpha-induced IkappaB kinase or p38 MAP kinase activation or for the ubiquitination of Rip1 by Traf2. J Biol Chem. 2004;279(32):33185–91.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Tian J, Ma Y, Cen H, Leng RX, Lu MM, et al. Association of RIP2 gene polymorphisms and systemic lupus erythematosus in a Chinese population. Mutagenesis. 2012;27(3):319–22.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy JV, Ni J, Dixit VM. RIP2 is a novel NF-kappaB-activating and cell death-inducing kinase. J Biol Chem. 1998;273(27):16968–75.

    Article  CAS  PubMed  Google Scholar 

  • Meylan E, Martinon F, Thome M, Gschwendt M, Tschopp J. RIP4 (DIK/PKK), a novel member of the RIP kinase family, activates NF-kappa B and is processed during apoptosis. EMBO Rep. 2002;3(12):1201–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 2003;114(2):181–90.

    Article  CAS  PubMed  Google Scholar 

  • Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FK. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis. 2015;6:e1636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muto A, Ruland J, McAllister-Lucas LM, Lucas PC, Yamaoka S, Chen FF, et al. Protein kinase C-associated kinase (PKK) mediates Bcl10-independent NF-kappa B activation induced by phorbol ester. J Biol Chem. 2002;277(35):31871–6.

    Article  CAS  PubMed  Google Scholar 

  • Nembrini C, Kisielow J, Shamshiev AT, Tortola L, Coyle AJ, Kopf M, et al. The kinase activity of Rip2 determines its stability and consequently Nod1- and Nod2-mediated immune responses. J Biol Chem. 2009;284(29):19183–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newton K, Sun X, Dixit VM. Kinase RIP3 is dispensable for normal NF-kappa Bs, signaling by the B-cell and T-cell receptors, tumor necrosis factor receptor 1, and Toll-like receptors 2 and 4. Mol Cell Biol. 2004;24(4):1464–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paisan-Ruiz C, Jain S, Evans EW, Gilks WP, Simon J, van der Brug M, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron. 2004;44(4):595–600.

    Article  CAS  PubMed  Google Scholar 

  • Pazdernik NJ, Donner DB, Goebl MG, Harrington MA. Mouse receptor interacting protein 3 does not contain a caspase-recruiting or a death domain but induces apoptosis and activates NF-kappaB. Mol Cell Biol. 1999;19(10):6500–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23(1):76–88.

    Article  CAS  PubMed  Google Scholar 

  • Sanna-Cherchi S, Sampogna RV, Papeta N, Burgess KE, Nees SN, Perry BJ, et al. Mutations in DSTYK and dominant urinary tract malformations. N Engl J Med. 2013;369(7):621–9.

    Article  CAS  PubMed  Google Scholar 

  • Schulte EC, Ellwanger DC, Dihanich S, Manzoni C, Stangl K, Schormair B, et al. Rare variants in LRRK1 and Parkinson’s disease. Neurogenetics. 2014;15(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  • Shameer K, Denny JC, Ding K, Jouni H, Crosslin DR, de Andrade M, et al. A genome- and phenome-wide association study to identify genetic variants influencing platelet count and volume and their pleiotropic effects. Hum Genet. 2014;133(1):95–109.

    Article  PubMed  Google Scholar 

  • Stanger BZ, Leder P, Lee TH, Kim E, Seed B. RIP: a novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell. 1995;81(4):513–23.

    Article  CAS  PubMed  Google Scholar 

  • Tao M, Scacheri PC, Marinis JM, Harhaj EW, Matesic LE, Abbott DW. ITCH K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways. Curr Biol. 2009;19(15):1255–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varfolomeev EE, Boldin MP, Goncharov TM, Wallach D. A potential mechanism of “cross-talk” between the p55 tumor necrosis factor receptor and Fas/APO1: proteins binding to the death domains of the two receptors also bind to each other. J Exp Med. 1996;183(3):1271–5.

    Article  CAS  PubMed  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 1998;281(5383):1680–3.

    Article  CAS  PubMed  Google Scholar 

  • Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430(7000):694–9.

    Article  CAS  PubMed  Google Scholar 

  • Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol. 2009;10(4):348–55.

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Kanda T, Nakamoto S, Imazeki F, Yokosuka O. Knockdown of receptor-interacting serine/threonine protein kinase-2 (RIPK2) affects EMT-associated gene expression in human hepatoma cells. Anticancer Res. 2012;32(9):3775–83.

    CAS  PubMed  Google Scholar 

  • Yin X, Krikorian P, Logan T, Csizmadia V. Induction of RIP-2 kinase by proinflammatory cytokines is mediated via NF-kappaB signaling pathways and involves a novel feed-forward regulatory mechanism. Mol Cell Biochem. 2010;333(1-2):251–9.

    Article  CAS  PubMed  Google Scholar 

  • Zha J, Zhou Q, Xu LG, Chen D, Li L, Zhai Z, et al. RIP5 is a RIP-homologous inducer of cell death. Biochem Biophys Res Commun. 2004;319(2):298–303.

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Lin J, Han J. Receptor-interacting protein (RIP) kinase family. Cell Mol Immunol. 2010;7(4):243–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF-2015R1A2A2A09001059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangdun Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this entry

Cite this entry

Anwar, M.A., Choi, S. (2017). Receptor-Interacting Protein Kinase. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6438-9_101494-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6438-9_101494-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6438-9

  • Online ISBN: 978-1-4614-6438-9

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Receptor-Interacting Protein Kinase
    Published:
    08 February 2017

    DOI: https://doi.org/10.1007/978-1-4614-6438-9_101494-2

  2. Original

    Receptor-Interacting Protein Kinase
    Published:
    11 November 2016

    DOI: https://doi.org/10.1007/978-1-4614-6438-9_101494-1