Skip to main content

DnaX Complex Composition and Assembly Within Cells

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Molecular Life Sciences
  • 319 Accesses

Synopsis

DnaX is the ATPase that drives assembly of β2 onto DNA in concert with the δ, δ’, χ, and ψ subunits of the DnaX complex. The dnaX gene in E. coli expresses two proteins τ and γ by a programmed translational frameshifting mechanism. Although proposals have been made that the γ subunit might have functions distinct from the replicase, the abundance of evidence points to a DnaXcx that contains two copies of τ and one of γ. τ performs special roles that γ cannot, because it lacks domains that interact with the DnaB helicase and Pol III α. τ is essential for dimerizing the replicase, holding the leading and lagging strand together and tethering the DNA polymerase III holoenzyme to the DnaB helicase, serving as the central organizer of the replisome. It is also essential to allow rapid chaperoning of Pol III onto β2after its assembly onto DNA. This raises questions regarding the role of γ. A proposal has been made that its function is to avoid a third polymerase in the replisome...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Becherel OJ, Fuchs RPP, Wagner J (2002) Pivotal role of the β-clamp in translesion DNA synthesis and mutagenesis in E. coli cells. DNA Repair (Amst) 1:703–708

    Article  CAS  Google Scholar 

  • Blinkova A, Hervas C, Stukenberg PT, Onrust R, O’Donnell ME, Walker JR (1993) The Escherichia coli DNA polymerase III holoenzyme contains both products of the dnaX Gene, Ï„ and γ, but only Ï„ is essential. J Bacteriol 175:6018–6027

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blinkowa AL, Walker JR (1990) Programmed ribosomal frameshifting generates the Escherichia coli DNA polymerase III γ subunit from within the Ï„ subunit reading frame. Nucleic Acids Res 18:1725–1729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P (2004) Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. J Mol Biol 335:1187–1197

    Article  CAS  PubMed  Google Scholar 

  • Cull MG, McHenry CS (1995) Purification of Escherichia coli DNA polymerase III holoenzyme. Methods Enzymol 262:22–35

    Article  CAS  PubMed  Google Scholar 

  • Dallmann HG, McHenry CS (1995) DnaX complex of Escherichia coli DNA polymerase III holoenzyme: physical characterization of the DnaX subunits and complexes. J Biol Chem 270:29563–29569

    Article  CAS  PubMed  Google Scholar 

  • Dohrmann PR, McHenry CS (2005) A bipartite polymerase-processivity factor interaction: only the internal β binding site of the α subunit is required for processive replication by the DNA polymerase III holoenzyme. J Mol Biol 350:228–239

    Article  CAS  PubMed  Google Scholar 

  • Downey CD, McHenry CS (2010) Chaperoning of a replicative polymerase onto a newly-assembled DNA-bound sliding clamp by the clamp loader. Mol Cell 37:481–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flower AM, McHenry CS (1990) The γ subunit of DNA polymerase III holoenzyme of Escherichia coli is produced by ribosomal frameshifting. Proc Natl Acad Sci U S A 87:3713–3717

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res 569:3–11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gao D, McHenry CS (2001a) Ï„ binds and organizes Escherichia coli replication proteins through distinct domains. Domain III, shared by γ and Ï„, binds δδ’ and χψ. J Biol Chem 276:4447–4453

    Article  CAS  PubMed  Google Scholar 

  • Gao D, McHenry CS (2001b) Ï„ binds and organizes Escherichia coli replication proteins through distinct domains. domain IV, located within the unique C terminus of Ï„, binds the replication fork helicase, DnaB. J Biol Chem 276:4441–4446

    Article  CAS  PubMed  Google Scholar 

  • Gao D, McHenry C (2001c) Ï„ Binds and Organizes E. coli Replication Proteins through Distinct Domains: Partial Proteolysis of Terminally Tagged Ï„ to Determine Candidate Domains and to Assign Domain V as the α Binding Domain. J Biol Chem 276:4433–4440

    Article  CAS  PubMed  Google Scholar 

  • Glover BP, McHenry CS (1998) The χψ subunits of DNA polymerase III holoenzyme bind to single-stranded DNA-binding protein (SSB) and facilitate replication of a SSB-coated template. J Biol Chem 273:23476–23484

    Article  CAS  PubMed  Google Scholar 

  • Glover BP, McHenry CS (2000) The DnaX-binding subunits δ’ and ψ are bound to γ and not Ï„ in the DNA polymerase III holoenzyme. J Biol Chem 275:3017–3020

    Article  CAS  PubMed  Google Scholar 

  • Hersh MN, Ponder RG, Hastings PJ, Rosenberg SM (2004) Adaptive mutation and amplification in Escherichia coli: two pathways of genome adaptation under stress. Res Microbiol 155:352–359

    Article  CAS  PubMed  Google Scholar 

  • Jarosz DF, Beuning PJ, Cohen SE, Walker GC (2007) Y-family DNA polymerases in Escherichia coli. Trends Microbiol 15:70–77

    Article  CAS  PubMed  Google Scholar 

  • Jeruzalmi D, O’Donnell ME, Kuriyan J (2001) Crystal structure of the processivity clamp loader gamma complex of E. coli DNA polymerase III. Cell 106:429–441

    Article  CAS  PubMed  Google Scholar 

  • Kim DR, McHenry CS (1996a) Biotin tagging deletion analysis of domain limits involved in protein-macromolecular interactions: mapping the Ï„ binding domain of the DNA polymerase III α subunit. J Biol Chem 271:20690–20698

    Article  CAS  PubMed  Google Scholar 

  • Kim DR, McHenry CS (1996b) Identification of the β-binding domain of the α subunit of Escherichia coli polymerase III holoenzyme. J Biol Chem 271:20699–20704

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Dallmann HG, McHenry CS, Marians KJ (1996a) Coupling of a replicative polymerase and helicase: a Ï„-DnaB interaction mediates rapid replication fork movement. Cell 84:643–650

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Dallmann HG, McHenry CS, Marians KJ (1996b) Ï„ protects β in the leading-strand polymerase complex at the replication fork. J Biol Chem 271:4315–4318

    Article  CAS  PubMed  Google Scholar 

  • Larsen B, Wills NM, Nelson C, Atkins JF, Gesteland RF (2000) Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frame shifting. Proc Natl Acad Sci U S A 97:1683–1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McHenry CS (1982) Purification and characterization of DNA polymerase III’: identification of Ï„ as a subunit of the DNA polymerase III holoenzyme. J Biol Chem 257:2657–2663

    CAS  PubMed  Google Scholar 

  • McHenry CS (2011) DNA replicases from a bacterial perspective. Annu Rev Biochem 80:403–436

    Article  CAS  PubMed  Google Scholar 

  • McHenry CS, Kornberg A (1977) DNA polymerase III holoenzyme of Escherichia coli purification and resolution into subunits. J Biol Chem 252:6478–6484 (and erratum 253:645)

    CAS  PubMed  Google Scholar 

  • McHenry CS, Oberfelder R, Johanson K, Tomasiewicz H, Franden MA (1987) Structure and mechanism of the DNA polymerase III holoenzyme. In: Kelly TJ, McMacken R (eds) DNA replication and recombination. Alan R Liss, New York, pp 47–62

    Google Scholar 

  • McInerney P, Johnson A, Katz F, O’Donnell M (2007) Characterization of a triple DNA polymerase replisome. Mol Cell 27:527–538

    Article  CAS  PubMed  Google Scholar 

  • Modrich P (1989) Methyl-directed DNA mismatch correction. J Biol Chem 264:6597–6600

    CAS  PubMed  Google Scholar 

  • Olson MW, Dallmann HG, McHenry CS (1995) DnaX-complex of Escherichia coli DNA polymerase III holoenzyme: the χψ complex functions by increasing the affinity of Ï„ and γ for δ−δ’ to a physiologically relevant range. J Biol Chem 270:29570–29577

    Article  CAS  PubMed  Google Scholar 

  • Onrust R, Finkelstein J, Naktinis V, Turner J, Fang L, O’Donnell ME (1995) Assembly of a chromosomal replication machine: two DNA polymerases, a clamp loader, and sliding clamps in one holoenzyme particle. I. Organization of the clamp loader. J Biol Chem 270:13348–13357

    Article  CAS  PubMed  Google Scholar 

  • Pages V, Fuchs RPP (2002) How DNA lesions are turned into mutations within cells? Oncogene 21:8957–8966

    Article  CAS  PubMed  Google Scholar 

  • Pritchard AE, McHenry CS (2001) Assembly of DNA polymerase III holoenzyme: co-assembly of γ and Ï„ is inhibited by DnaX complex accessory proteins but stimulated By DNA polymerase III core. J Biol Chem 276:35217–35222

    Article  CAS  PubMed  Google Scholar 

  • Pritchard AE, Dallmann HG, McHenry CS (1996) In vivo assembly of the Ï„-complex of the DNA polymerase III holoenzyme expressed from a five-gene artificial operon: cleavage of the Ï„-complex to form a mixed γ−τ-complex by the OmpT protease. J Biol Chem 271:10291–10298

    Article  CAS  PubMed  Google Scholar 

  • Pritchard AE, Dallmann HG, Glover BP, McHenry CS (2000) A novel assembly mechanism for the DNA polymerase III holoenzyme DnaX complex: association of δδ’ with DnaX(4) forms DnaX(3)δδ’. EMBO J 19:6536–6545

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reyes-Lamothe R, Sherratt DJ, Leake MC (2010) Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 328:498–501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O’Donnell M, Kuriyan J (2009) The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Cell 137:659–671

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song MS, McHenry CS (2001) Carboxyl-terminal domain III of the δ’ subunit of DNA polymerase III holoenzyme binds DnaX and supports cooperative DnaX-complex assembly. J Biol Chem 276:48709–48715

    Article  CAS  PubMed  Google Scholar 

  • Song MS, Dallmann HG, McHenry CS (2001a) Carboxyl-terminal domain III of the δ’ subunit of the DNA polymerase III holoenzyme binds δ. J Biol Chem 276:40668–40679

    Article  CAS  PubMed  Google Scholar 

  • Song MS, Pham PT, Olson M, Carter JR, Franden MA, Schaaper RM, McHenry CS (2001b) The δ and δ’ subunits of the DNA polymerase III holoenzyme are essential for initiation complex formation and processive elongation. J Biol Chem 276:35165–35175

    Article  CAS  PubMed  Google Scholar 

  • Tippin B, Pham P, Goodman MF (2004) Error-prone replication for better or worse. Trends Microbiol 12:288–295

    Article  CAS  PubMed  Google Scholar 

  • Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci U S A 87:2516–2520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vass RH, Chien P (2013) Critical clamp loader processing by an essential AAA+ protease in Caulobacter crescentus. Proc Natl Acad Sci U S A 110:18138–18143

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeiser B, Pepper ED, Goodman MF, Finkel SE (2002) SOS-induced DNA polymerases enhance long-term survival and evolutionary fitness. Proc Natl Acad Sci U S A 99:8737–8741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan Q, McHenry CS (2009) Strand displacement by DNA polymerase III occurs through a Ï„-ψ-χ link to SSB coating the lagging strand template. J Biol Chem 284:31672–31679

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles McHenry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

McHenry, C. (2015). DnaX Complex Composition and Assembly Within Cells. In: Wells, R., Bond, J., Klinman, J., Masters, B., Bell, E. (eds) Molecular Life Sciences. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6436-5_123-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6436-5_123-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6436-5

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    DnaX Complex Composition and Assembly Within Cells
    Published:
    18 February 2015

    DOI: https://doi.org/10.1007/978-1-4614-6436-5_123-2

  2. Original

    DnaX Complex Composition and Assembly Within Cells
    Published:
    09 September 2014

    DOI: https://doi.org/10.1007/978-1-4614-6436-5_123-1