Skip to main content

Abstract

Carbon dioxide (CO2) geological storage is the last process in carbon dioxide capture and storage (CCS). Technical issues to conduct it safely are firstly introduced. Geophysical and geochemical trapping mechanisms to store CO2 within the reservoir, geophysical monitoring and modeling, and geomechanical modeling are then described as key issues. Finally, future directions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alam A, Niioka M, Fujii Y, Fukuda D, Kodama J (2014) Effects of confining pressure on the permeability of three rock types under compression. Int J Rock Mech Min Sci 65:49–61

    Google Scholar 

  • Alnes H, Eiken O, Stenvold T (2008) Monitoring gas production and CO2 injection at the Sleipner field using time-lapse gravimetry. Geophysics 73:WA155–WA162

    Article  Google Scholar 

  • Arts R, Eiken O, Chadwick A, Zweigel P, Van del Meer B, Kirby G (2004) Seismic monitoring at the Sleipner underground CO2 storage site (North Sea). In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide, vol 233, Special publications. Geological Society, London, pp 181–191

    Google Scholar 

  • Bachu S, Bennion DB (2008) Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems. Environ Geol 54:1707–1722

    Article  Google Scholar 

  • Bachu S, Bennion DB (2009) Interfacial tension between CO2, freshwater, and brine in the range of pressure from (2 to 27) MPa, temperature from (20 to 125) °C, and water salinity from (0 to 334 000) mg · L−1. J Chem Eng Data 54:765–775

    Article  Google Scholar 

  • Bénézeth P, Palmer DA, Anovitz LM, Horita J (2007) Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: implications for mineral trapping of CO2. Geochim Cosmochim Acta 71:4438–4455

    Article  Google Scholar 

  • Blum AE, Stillings LL (1995) Feldspar dissolution kinetics. In: White AF, Brantley SL (eds) Chemical weathering rates of silicate minerals, vol 31, Reviews in mineralogy. Mineralogical Society of America, Washington, DC, pp 291–351

    Google Scholar 

  • Blunt M, Fayers FJ, Orr FM Jr (1993) Carbon dioxide in enhanced oil recovery. Energy Convers Manage 34:1197–1204

    Article  Google Scholar 

  • Brodsky EE, Prejean SG (2005) New constraints on mechanisms of remotely triggered seismicity at long valley caldera. J Geophys Res Solid Earth (1978–2012) 110(B4), B04302, doi:10.1029/2004JB003211

    Google Scholar 

  • Burch TE, Nagy KL, Lasaga AC (1993) Free energy dependence of albite dissolution kinetics at 80°C and pH8.8. Chem Geol 105:137–162

    Article  Google Scholar 

  • Cappa F, Rutqvist J (2011) Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2. Int J Greenhouse Gas Control 5(2):336–346

    Article  Google Scholar 

  • Cappa F, Rutqvist J, Yamamoto K (2009) Modeling crustal deformation and rupture processes related to upwelling of deep CO2-rich fluids during the 1965–1967 Matsushiro earthquake swarm in Japan. J Geophys Res 114(B10), B10304, doi:10.1029/2009jb006398

    Google Scholar 

  • Chadwick RA, Noy D, Arts R, Eiken O (2009) Latest time-lapse seismic data from Sleipner yield new insights into CO2 plume development. Energy Procedia 1:2103–2110

    Article  Google Scholar 

  • Chin L, Raghavan R, Thomas L (2000) Fully coupled geomechanics and fluid-flow analysis of wells with stress-dependent permeability. SPE J 5(01):32–45

    Article  Google Scholar 

  • Chiquet P, Broseta D, Thibeau S (2007) Wettability alteration of caprock minerals by carbon dioxide. Geofluids 7:112–122

    Article  Google Scholar 

  • Cochran ES, Vidale JE, Tanaka S (2004) Earth tides can trigger shallow thrust fault earthquakes. Science 306(5699):1164–1166

    Article  Google Scholar 

  • Deichmann N, Giardini D (2009) Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismol Res Lett 80(5):784–798

    Article  Google Scholar 

  • Dewhurst DN, Jones RM, Raven MD (2002) Microstructural and petrophysical characterization of Muderong Shale: application to top seal risking. Petrol Geosci 8:371–383

    Article  Google Scholar 

  • Egermann P, Lombard J-M, Bretonnier P (2006) A fast and accurate method to measure threshold capillary pressure of caprocks under representative conditions. In: SCA2006-07, presented at the 2006 SCA international symposium, Trondheim, 18–22 Sept

    Google Scholar 

  • Eiken O, Ringrose P, Hermanrud C, Nazarian B, Torp TA, Høier L (2011) Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia 4:5541–5548

    Article  Google Scholar 

  • Ellsworth WL (2013) Injection-induced earthquakes. Science 341(6142):1225942

    Article  Google Scholar 

  • Etchecopar A, Vasseur G, Daignieres M (1981) An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis, Journal of Structural Geology, 3(1), 51–65

    Article  Google Scholar 

  • Funatsu T, Okuyama Y, Lei X, Uehara S, Nakashima Y, Fujii T, Nakao S (2013) Assessing the geomechanical responses of storage system in CO2 geological storage: an introduction of research program in the national institute for advanced industrial science and technology (AIST). Energy Procedia 37:3875–3882

    Article  Google Scholar 

  • Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modeling for CO2 storage, what to expect from it? Int J Greenhouse Gas Control 2:605–625

    Article  Google Scholar 

  • Gephart JW, Forsyth DW (1984) An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence, Journal of Geophysical Research: Solid Earth (1978–2012), 89(B11), 9305–9320.

    Google Scholar 

  • Giammanco S, Palano M, Scaltrito A, Scarfi L, Sortino F (2008) Possible role of fluid overpressure in the generation of earthquake swarms in active tectonic areas: the case of the Peloritani Mts. (Sicily, Italy). J Volcanol Geotherm Res 178(4):795–806

    Article  Google Scholar 

  • Global CCS Institute (2014) Status of CCS project database. http://www.globalccsinstitute.com/data/status-ccsproject-database

  • Gunter WD, Gentzis T, Rottenfusser BA, Richardson RJH (1997) Deep coalbed methane in Alberta, Canada: a fuel resource with the potential of zero greenhouse gas emissions. Energy Convers Manage 38:217–222

    Article  Google Scholar 

  • Hagiwara T, Iwata T (1968) Summary of the seismographic observation of the Matsushiro swarm earthquakes. Bull Earthq Res Inst 46:485–515

    Google Scholar 

  • Hainzl S, Ogata Y (2005) Detecting fluid signals in seismicity data through statistical earthquake modeling. J Geophys Res Solid Earth (1978–2012) 110(B5), B5S07, doi:10.1029/2004JB003247

    Google Scholar 

  • Hellevang H, Aagaard P, Oelkers EH, Kvamme B (2005) Can dawsonite permanently trap CO2? Environ Sci Technol 39:8281–8287

    Article  Google Scholar 

  • Hellmann R, Tisserand D (2006) Dissolution kinetics as a function of the Gibbs free energy of reaction: an experimental study based on albite feldspar. Geochim Cosmochim Acta 70:364–383

    Article  Google Scholar 

  • Helmstetter A, Sornette D, Grasso JR (2003) Mainshocks are aftershocks of conditional foreshocks: how do foreshock statistical properties emerge from aftershock laws. J Geophys Res Solid Earth (1978–2012) 108(B1), B012046, doi:10.1029/2002JB001991

    Google Scholar 

  • Hildenbrand A, Schlömer S, Krooss BM (2002) Gas breakthrough experiments on fine-grained sedimentary rocks. Geofluids 2:3–23

    Article  Google Scholar 

  • Hildenbrand A, Schlömer S, Krooss BM, Littke R (2004) Gas breakthrough experiments on pelitic rocks: comparative study with N2, CO2 and CH4. Geofluids 4:61–80

    Article  Google Scholar 

  • IPCC (2005) Underground geological storage. In: Metz B, Davidson O, Coninck H, Loos M, Meyer L (eds) IPCC special report on carbon dioxide capture and storage. Cambridge University Press, New York, pp 195–276

    Google Scholar 

  • Ishido T, Pritchett JW (1999) Numerical simulation of electrokinetic potentials associated with subsurface fluid flow. J Geophys Res 104:15247–15259

    Article  Google Scholar 

  • Ishido T, Tosha T, Akasaka C, Nishi Y, Sugihara M, Kano Y, Nakanishi S (2011) Changes in geophysical observables caused by CO2 injection into saline aquifers. Energy Procedia 4:3276–3283

    Article  Google Scholar 

  • Ishido T, Pritchett JW, Nishi Y, Sugihara M, Garg SK, Stevens JL, Tosha T, Nakanishi S, Nakao S (2015) Application of various geophysical techniques to reservoir monitoring and modeling. In: Proceedings, World Geothermal Congress, Melbourne

    Google Scholar 

  • Itasca F (2000) Fast Lagrangian analysis of continua. Itasca Consulting Group, Minneapolis

    Google Scholar 

  • Johnson JW, Nitao JJ, Knauss KG (2004) Reactive transport modeling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning. In: Baines SJ, Worden RH (eds) Geological storage of carbon dioxide. The Geological Society, London, pp 107–128

    Google Scholar 

  • Kano Y, Funatsu T, Nakao S, Kusunose K, Ishido T, Lei X, Tosha T (2014) Analysis of changes in stress state and fault stability related to planned CO2 injection at the Tomakomai offshore site. Energy Procedia 63:2870–2878

    Article  Google Scholar 

  • Kasahara K (1970) The source region of the Matsushiro swarm earthquakes. Bull Earthq Res Inst Tokyo Univ 48:581–602

    Google Scholar 

  • Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34:8179–8181

    Article  Google Scholar 

  • Katz AJ, Thompson AH (1987) Prediction of rock electrical conductivity from mercury injection measurements. J Geophys Res 92:599–607

    Article  Google Scholar 

  • King GC, Stein RS, Lin J (1994) Static stress changes and the triggering of earthquakes. Bull Seismol Soc Am 84(3):935–953

    Google Scholar 

  • Koide HG, Tazaki Y, Noguchi Y, Nakayama S, Iijima M, Ito K, Shindo Y (1992) Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Convers Manage 33:619–626

    Article  Google Scholar 

  • Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton

    Book  Google Scholar 

  • Lei X, Ma S (2013) Insights gained from the injection-induced seismicity in the southwestern Sichuan Basin, China. In: Ito T (ed) 6th international symposium on in-situ rock stress, Sendai, pp 176–187

    Google Scholar 

  • Lei X, Xue Z (2009) Ultrasonic velocity and attenuation during CO2 injection into water-saturated porous sandstone: measurements using difference seismic tomography. Phys Earth Planet In 176(3–4):224–234

    Article  Google Scholar 

  • Lei X, Yu G, Ma S, Wen X, Wang Q (2008) Earthquakes induced by water injection at ∼ 3 km depth within the Rongchang gas field, Chongqing, China. J Geophys Res 113(B10), B10310, doi:10.1029/2008jb005604

    Google Scholar 

  • Lei X, Tamagawa T, Tezuka K, Takahashi M (2011a) Role of drainage conditions in deformation and fracture of porous rocks under triaxial compression in the laboratory. Geophys Res Lett 38(24), L24310, doi:10.1029/2011gl049888

    Google Scholar 

  • Lei X, Xie C, Fu B (2011b) Remotely triggered seismicity in Yunnan, southwestern China, following the 2004mw9.3 Sumatra earthquake. J Geophys Res 116(B8), B08303, doi:10.1029/2011jb008245

    Google Scholar 

  • Lei X, Ma S, Chen W, Pang C, Zeng J, Jiang B (2013) A detailed view of the injection-induced seismicity in a natural gas reservoir in Zigong, southwestern Sichuan Basin, China. J Geophys Res Solid Earth 118(8):4296–4311

    Article  Google Scholar 

  • Lei X, Li X, Li Q (2014) Insights on injection-induced seismicity gained from laboratory AE study – fracture behavior of sedimentary rocks. In: Shimizu N, Kaneko K, Kodama J (eds) 8th Asian rock mechanics symposium. Japanese Committee for Rock Mechanics, Sapporo, pp 947–953

    Google Scholar 

  • Lei X, Funatsu T, Ma S, Liu L (2015) A laboratory acoustic emission experiment and numerical simulation of rock fracture driven by a high-pressure fluid source. J Rock Mech Geotech, doi:10.1016/j.jrmge.2015.02.010 (In press, Available online 4 June 2015)

    Google Scholar 

  • Li S, Dong M, Li Z, Huang S, Qing H, Nickel E (2005) Gas breakthrough pressure for hydrocarbon reservoir seal rocks: implications for the security of long-term CO2 storage in the Weyburn field. Geofluids 5:326–334

    Article  Google Scholar 

  • Litynski J, Rodosta T, Brown B (2012) Best practices for monitoring, verification, and accounting of CO2 stored in deep geologic formations – 2012 update. NETL, Albany OR USA

    Google Scholar 

  • Liu YP, Hopmans JW, Grismer ME, Chen JY (1998) Direct estimation of air-oil and oil–water capillary pressure and permeability relations from multi-step outflow experiments. J Contam Hydrol 32:223–245

    Article  Google Scholar 

  • Lockner DA, Beeler NM (1999) Premonitory slip and tidal triggering of earthquakes. J Geophys Res Solid Earth (1978–2012) 104(B9):20133–20151

    Article  Google Scholar 

  • Lüttge A (2006) Crystal dissolution kinetics and Gibbs free energy. J Electron Spectrosc Relat Phenom 150:248–259

    Article  Google Scholar 

  • Marsan D, Prono E, Helmstetter A (2013) Monitoring aseismic forcing in fault zones using earthquake time series. Bull Seismol Soc Am 103(1):169–179

    Article  Google Scholar 

  • Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Mazzoldi A, Rinaldi AP, Borgia A, Rutqvist J (2012) Induced seismicity within geological carbon sequestration projects: maximum earthquake magnitude and leakage potential from undetected faults. Int J Greenhouse Gas Control 10:434–442

    Article  Google Scholar 

  • Miller SA, Collettini C, Chiaraluce L, Cocco M, Barchi M, Kaus BJ (2004) Aftershocks driven by a high-pressure CO2 source at depth. Nature 427(6976):724–727

    Article  Google Scholar 

  • Morris A, Ferrill DA, Brent Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275

    Article  Google Scholar 

  • Morse JW, Arvidson RS, Lüttge A (2007) Calcium carbonate formation and dissolution. Chem Rev 107:342–381

    Article  Google Scholar 

  • Nooner SL, Eiken O, Hermanrud C, Sasagawa GS, Stenvold T, Zumberge MA (2007) Constraints on the in situ density of CO2 within the Utsira formation from time-lapse seafloor gravity measurements. Int J Greenhouse Gas Control 1:198–214

    Article  Google Scholar 

  • Ogata Y (1992) Detection of precursory relative quiescence before great earthquakes through a statistical model. J Geophys Res Solid Earth (1978–2012) 97(B13):19845–19871

    Article  Google Scholar 

  • Ogata Y (2001) Increased probability of large earthquakes near aftershock regions with relative quiescence. J Geophys Res Solid Earth (1978–2012) 106(B5):8729–8744

    Article  Google Scholar 

  • Ohtake M (1976) A review of the Matsushiro earthquake swarm. Kagaku (Jpn) 46:306–313

    Google Scholar 

  • Okuyama Y, Sasaki M, Nakanishi S, Todaka N, Ajima S (2009) Geochemical CO2 trapping in open aquifer storage – the Tokyo Bay model. Energy Procedia 1:3253–3258

    Article  Google Scholar 

  • Onuma T, Ohkawa S (2009) Detection of surface deformation related with CO2 injection by DInSAR at In Salah, Algeria. Energy Procedia 1(1):2177–2184

    Article  Google Scholar 

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. U.S. Geological Survey, open file reports, 2004–1068

    Google Scholar 

  • Pittman ED (1992) Relationship of porosity and permeability to various parameters derived from mercury injection – capillary pressure curves for sandstone. AAPG Bull 76:191–198

    Google Scholar 

  • Plug W-J, Bruining J (2007) Capillary pressure for the sand-CO2-water system under various pressure conditions. Application to CO2 sequestration. Adv Water Resour 30:2339–2353

    Article  Google Scholar 

  • Pritchett JW (1995) STAR – a geothermal reservoir simulation system. In: Proceedings, World Geothermal Congress, Florence, pp 2959–2963

    Google Scholar 

  • Pritchett JW (2002) STAR user’s manual version 9.0. SAIC-02/1055, San Diego

    Google Scholar 

  • Pritchett JW (2008) New “SQSCO2” equation of state for the “STAR” code. SAIC, San Diego

    Google Scholar 

  • Pritchett JW, Stevens JL, Wannamaker P, Nakanishi S, Yamazawa S (2000) Theoretical feasibility studies of reservoir monitoring using geophysical survey techniques. In: Proceedings, World Geothermal Congress, Kyushu/Tohoku, pp 2803–2808

    Google Scholar 

  • Pruess K (2005) ECO2N: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. LBNL-57952, Berkeley

    Google Scholar 

  • Pruess K (2011) ECO2M: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2, including super- and sub-critical conditions, and phase change between liquid and gaseous CO2. LBNL-4590E, Berkeley

    Google Scholar 

  • Pruess K, García J, Kovscek T, Oldenburg C, Rutqvist J, Steefel C, Xu T (2002) Intercomparison of numerical simulation codes for geologic disposal of CO2. LBNL-51813, Berkeley

    Google Scholar 

  • Purcell WR (1949) Capillary pressures — their measurement using mercury and the calculation of permeability therefrom. AIME Pet Trans 186:39–48

    Google Scholar 

  • Rinaldi AP, Rutqvist J (2013) Modeling of deep fracture zone opening and transient ground surface uplift at kb-502 CO2 injection well, In Salah, Algeria. Int J Greenhouse Gas Control 12:155–167

    Article  Google Scholar 

  • Rutqvist J, Wu Y-S, Tsang C-F, Bodvarsson G (2002) A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock. Int J Rock Mech Min Sci 39(4):429–442

    Article  Google Scholar 

  • Rutqvist J, Birkholzer J, Tsang C-F (2008) Coupled reservoir–geomechanical analysis of the potential for tensile and shear failure associated with CO2 injection in multilayered reservoir–caprock systems. Int J Rock Mech Min Sci 45(2):132–143

    Article  Google Scholar 

  • Schowalter TT (1979) Mechanics of secondary hydrocarbon migration and entrapment. AAPG Bull 63:723–760

    Google Scholar 

  • Shah V, Broseta D, Mouronval G, Montel F (2008) Water/acid gas interfacial tensions and their impact on acid gas geological storage. Int J Greenhouse Gas Control 2:594–604

    Article  Google Scholar 

  • Sorai M, Sasaki M (2010) Dissolution kinetics of anorthite in a supercritical CO2–water system. Am Mineral 95:853–862

    Article  Google Scholar 

  • Sorai M, Fujii T, Kano Y, Uehara S, Honda K (2014a) Experimental study of sealing performance: effects of particle size and particle-packing state on threshold pressure of sintered compacts. J Geophys Res. doi:10.1002/2014JB011177

    Google Scholar 

  • Sorai M, Sasaki M, Fujii T, Kano Y, Uehara S (2014b) Evaluation of sealing performance of alternated sandstone and mudstone layers on CO2 geological sequestration (in Japanese). GSJ Chishitsu News 3:153–156

    Google Scholar 

  • Stein RS (1999) The role of stress transfer in earthquake occurrence. Nature 402(6762):605–609

    Article  Google Scholar 

  • Stevens JL, Pritchett JW, Garg SK, Ishido T, Tosha T (2003) Prediction of seismic observables from geothermal reservoir simulations. Geotherm Resour Counc Trans 27:841–846

    Google Scholar 

  • Streit JE, Hillis RR (2004) Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 29(9–10):1445–1456

    Article  Google Scholar 

  • Sugihara M, Ishido T (2008) Geothermal reservoir monitoring with a combination of absolute and relative gravimetry. Geophysics 73:WA37–WA47

    Article  Google Scholar 

  • Sugihara M, Nawa K, Nishi Y, Ishido T, Soma N (2013) Continuous gravity monitoring for CO2 geo-sequestration. Energy Procedia 37:4302–4309

    Article  Google Scholar 

  • Swanson BF (1981) A simple correlation between permeabilities and mercury capillary pressures. J Petrol Tech 33:2488–2504

    Google Scholar 

  • Terakawa T, Hashimoto C, Matsu’ura M (2013) Changes in seismic activity following the 2011 Tohoku-oki earthquake: effects of pore fluid pressure. Earth Planet Sci Lett 365:17–24

    Article  Google Scholar 

  • Thomeer JHM (1960) Introduction of a pore geometrical factor defined by the capillary pressure curve. J Petrol Tech 12:73–77

    Google Scholar 

  • Todesco M, Rutqvist J, Chiodini G, Pruess K, Oldenburg CM (2004) Modeling of recent volcanic episodes at phlegrean fields (italy): Geochemical variations and ground deformation. Geothermics 33(4):531–47

    Article  Google Scholar 

  • Tsukahara H, Yoshida N (2005) Origin of groundwater which caused the Matsushiro earthquake swarm. Chikyu 27(6):453–460

    Google Scholar 

  • Utsu T (2002) Statistical features of seismicity. Int Geophys Ser 81(A):719–732

    Article  Google Scholar 

  • Washburn EW (1921) Note on a method of determining the distribution of pore sizes in a porous material. Proc Natl Acad Sci 7:115–116

    Article  Google Scholar 

  • White AF, Brantley SL (2003) The effect of time on the weathering of silicate minerals: why do weathering rates differ in the laboratory and field? Chem Geol 202:479–506

    Article  Google Scholar 

  • White SP, Allis RG, Moore J, Chidsey T, Morgan C, Gwynn W, Adams M (2005) Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah. USA Chem Geol 217:387–405

    Article  Google Scholar 

  • Wollenweber J, Alles S, Busch A, Kroos BM, Stanjek H, Littke R (2010) Experimental investigation of the CO2 sealing efficiency of caprocks. Int J Greenhouse Gas Control 4:231–241

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2003) Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep arenaceous formations. J Geophys Res 108(B2):2071. doi:10.1029/2002JB001979

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone-shale system. Chem Geol 217:295–318

    Article  Google Scholar 

  • Yamashita T, Suzuki T (2009) Quasi-static fault slip on an interface between poroelastic media with different hydraulic diffusivity: a generation mechanism of afterslip. J Geophys Res 114(B3), B03405, doi:10.1029/2008jb005930

    Google Scholar 

  • Zhang J, Standifird W, Roegiers J-C, Zhang Y (2007) Stress-dependent fluid flow and permeability in fractured media: from lab experiments to engineering applications. Rock Mech Rock Eng 40(1):3–21

    Article  Google Scholar 

  • Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380

    Article  MathSciNet  MATH  Google Scholar 

  • Zoback MD, Gorelick SM (2012) Earthquake triggering and large-scale geologic storage of carbon dioxide. Proc Natl Acad Sci U S A 109(26):10164–10168

    Article  Google Scholar 

  • Zoback M, Kohli A, Das I, McClure M (2013) The importance of slow slip on faults during hydraulic fracturing stimulation of shale gas reservoirs, paper presented at SPE Americas Unconventional Resources Conference, 5-7 June, Pittsburgh, Pennsylvania USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masao Sorai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Sorai, M., Lei, X., Nishi, Y., Ishido, T., Nakao, S. (2015). CO2 Geological Storage. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_85-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_85-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Geological Storage
    Published:
    16 February 2022

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_85-2

  2. Original

    Geological Storage
    Published:
    14 September 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_85-1