Skip to main content

Conversion of Syngas to Fuels and Chemicals

Handbook of Climate Change Mitigation and Adaptation

Abstract

This chapter examines the reaction pathways and the selectivity of the catalysts for the conversion of syngas to liquid hydrocarbons and ethanol fuels. Rh is by far the most active catalyst for ethanol synthesis. Co- and Fe-based catalysts exhibit excellent activity for hydrocarbon fuel synthesis from high H2/CO and low H2/CO ratio syngas, respectively. Regardless of the differences in the catalyst selectivity, all of these CO hydrogenation catalysts produce methane as one of the major products. So far, no approaches are effective in suppressing CH4 formation. Development of a cost-effective liquid-fuel process from syngas with a low net fuel cycle CO2 emission requires consideration of (1) the overall system, including the source of raw materials and by-products and (2) analysis of carbon footprint of each step from raw materials to the desired products and undesired by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anderson RB (1983) Fischer Tropsch and related synthesis. Academic, New York

    Google Scholar 

  • Balakos MW, Chuang SSC (1995) Dynamic and LHHW kinetic analyses of heterogeneous catalytic hydroformylation. J Catal 151(2):266–278

    Article  Google Scholar 

  • Biloen P, Sachtler WMH (1981) Mechanism of hydrocarbon synthesis over Fischer-Tropsch catalysts. Adv Catal 30:165–216

    Google Scholar 

  • Boffa A et al (1994) Promotion of CO and CO2 hydrogenation over Rh by metal oxides: the influence of oxide Lewis acidity and reducibility. J Catal 149(1):149–158

    Article  Google Scholar 

  • Burtron H, Davis MLO (2009) Advances in Fischer-Tropsch synthesis, catalysts, and catalysis. CRC Press, Boca Raton

    Google Scholar 

  • Castner DG, Blackadar RL, Somorjai GA (1980) Carbon monoxide hydrogenation over clean and oxidized rhodium foil and single crystal catalysts. Correlations of catalyst activity, selectivity, and surface composition. J Catal 66(2):257–266

    Article  Google Scholar 

  • Chuang SSC (1990) Sulfided group VIII metals for hydroformylation. Appl Catal 66(1):L1–L6

    Article  Google Scholar 

  • Chuang SSC, Guzmanm F (2009) Mechanistic investigation of heterogeneous catalysis by transient infrared methods. Top Catal 52:1448–1458

    Article  Google Scholar 

  • Chuang SSC, Pien SI (1991) Synthesis of aldehydes from synthesis gas over sodium-promoted manganese-nickel catalysts. J Catal 128(2):569–573

    Article  Google Scholar 

  • Chuang SSC, Pien SI (1992a) Role of silver promoter in carbon monoxide hydrogenation and ethylene hydroformylation over rhodium/silica catalysts. J Catal 138(2):536–546

    Article  Google Scholar 

  • Chuang SSC, Pien SI (1992b) Infrared study of the carbon monoxide insertion reaction on reduced, oxidized, and sulfided rhodium/silica catalysts. J Catal 135(2):618–634

    Article  Google Scholar 

  • Chuang SC et al (1985a) The use of probe molecules in the study of carbon monoxide hydrogenation over silica-supported nickel, ruthenium, rhodium, and palladium. J Catal 96(2):396–407

    Article  Google Scholar 

  • Chuang SC, Goodwin JG Jr, Wender I (1985b) The effect of alkali promotion on carbon monoxide hydrogenation over rhodium/titania. J Catal 95(2):435–446

    Article  Google Scholar 

  • Chuang SSC et al (1991) Carbon monoxide hydrogenation over sodium-manganese-nickel catalysts: effects of catalyst preparation methods on the C2+ oxygenate selectivity. Appl Catal 70(1):101–114

    Article  Google Scholar 

  • Chuang SSC, Stevens RW Jr, Khatri R (2005) Mechanism of C2+ oxygenate synthesis on Rh catalysts. Top Catal 32(3–4):225–232

    Article  Google Scholar 

  • Davis BH (2001) Fischer-Tropsch synthesis: current mechanism and futuristic needs. Fuel Process Technol 71(1–3):157–166

    Article  Google Scholar 

  • Davis BH, Occelli ML (eds) (2009) Advances in Fischer-Tropsch synthesis, catalysts, and catalysis, vol 128, Chemical industries. CRC Press, Boca Raton, 403 pp

    Google Scholar 

  • Dry ME (1981a) The Fischer-Tropsch synthesis. Catal Sci Technol 1:159–255

    Google Scholar 

  • Dry ME (1981b) The Fischer-Tropsch synthesis. In: Anderson JR, Boudart M (eds) Catalysis – science and technology, vol 1. Springer, Berlin/Heidelberg/New York, pp 159–255

    Google Scholar 

  • Ertl G, Knözinger H, Schüth F, Weitkamp J (2008) Handbook of heterogeneous catalysis, vol 6. Wiley, Weinheim

    Book  Google Scholar 

  • Hedrick SA, Chuang SSC (2003) Modeling the Fischer-Tropsch reaction in a slurry bubble column reactor. Chem Eng Commun 190(4):445–474

    Article  Google Scholar 

  • Ichikawa M, Fukushima T (1985) Mechanism of syngas conversion into C2-oxygenates such as ethanol catalyzed on a silica-supported rhodium-titanium catalyst. J Chem Soc Chem Commun 6:321–323

    Article  Google Scholar 

  • Ichikawa M et al (1985) Selective hydroformylation of ethylene on rhodium-zinc-silica. An apparent example of site isolation of rhodium and Lewis acid-promoted carbonyl insertion. J Am Chem Soc 107(24):7216–7218

    Article  Google Scholar 

  • Keim W (1983) Catalysis in C1 chemistry: catalysis by metal complexes, vol 4. Springer, Berlin

    Google Scholar 

  • Kellner CS, Bell AT (1981) Synthesis of oxygenated products from carbon monoxide and hydrogen over silica- and alumina-supported ruthenium catalysts. J Catal 71(2):288–295

    Article  Google Scholar 

  • Klier K et al (1988) Mechanism of methanol and higher oxygenate synthesis. Stud Surf Sci Catal 36:109–125. Methane Conversion, Proceedings of a Symposium on the Production of Fuels and Chemicals from Natural Gas

    Google Scholar 

  • Konishi Y, Ichikawa M, Sachtler WMH (1987) Hydrogenation and hydroformylation with supported rhodium catalysts: effect of adsorbed sulfur. J Phys Chem 91(24):6286–6291

    Article  Google Scholar 

  • Larson ED et al (2010) Co-production of decarbonized synfuels and electricity from coal + biomass with CO2 capture and storage: an Illinois case study. Energy Environ Sci 3(1):28–42

    Article  Google Scholar 

  • Li X et al (1998) Higher alcohols from synthesis gas using carbon-supported doped molybdenum-based catalysts. Ind Eng Chem Res 37(10):3853–3863

    Article  Google Scholar 

  • McCash EM (2001) Surface chemistry. Oxford University Press, New York

    Google Scholar 

  • McKee ML, Worley SD (1988) A theoretical study of rhodium/carbonyl species. J Phys Chem 92(13):3699–3700

    Article  Google Scholar 

  • Nonneman LEY et al (1990) Role of impurities in the enhancement of C2-oxygenates activity: supported rhodium catalysts. Appl Catal 62(2):L23–L28

    Article  Google Scholar 

  • Nunan JG et al (1989) Higher alcohol and oxygenate synthesis over cesium-doped copper/zinc oxide catalysts. J Catal 116(1):195–221

    Article  Google Scholar 

  • Poels EK, Ponec V (1983) Formation of oxygenated products from synthesis gas. Catalysis 6:196–234

    Article  Google Scholar 

  • Rao VUS, Gormley RJ (1982) Catalyst for converting synthesis gas to light olefins. (United States Dept. of Energy, USA). Application: US, 5 pp

    Google Scholar 

  • Schindeler HD (1989) Coal liquefaction – a research and development needs assessment, vol II. US Department of Energy, McLean

    Google Scholar 

  • Soled SL et al (2003) Control of metal dispersion and structure by changes in the solid-state chemistry of supported cobalt Fischer-Tropsch catalysts. Top Catal 26(1–4):101–109

    Article  Google Scholar 

  • Stroch HH, Golumbic N, Anderson RB (1951) The Fischer-Tropsch and related syntheses. Wiley, New York

    Google Scholar 

  • Tatsumi T et al (1986) Effects of molybdenum precursors on the activity of alkali-promoted molybdenum catalysts for alcohol synthesis from carbon monoxide-hydrogen. Polyhedron 5(1–2):257–260

    Article  Google Scholar 

  • Treptow RS (2010) Carbon footprint calculations: an application of chemical principles. J Chem Educ 87(2):168–171

    Article  Google Scholar 

  • Underwood RP, Bell AT (1986) Carbon monoxide hydrogenation over rhodium supported on silicon oxide, lanthanum oxide, neodymium oxide, and samarium(III) oxide. Appl Catal 21(1):157–168

    Article  Google Scholar 

  • Underwood RP, Bell AT (1988a) Lanthana-promoted rhodium/silica. I. Studies of carbon monoxide and hydrogen adsorption and desorption. J Catal 109(1):61–75

    Article  Google Scholar 

  • Underwood RP, Bell AT (1988b) Lanthana-promoted rhodium/silica. II. Studies of carbon monoxide hydrogenation. J Catal 111(2):325–335

    Article  Google Scholar 

  • Vannice MA (1975a) Catalytic synthesis of hydrocarbons from molecular hydrogen/carbon monoxide mixtures over the group VIII metals. III. Metal-support effects with platinum and palladium catalysts. J Catal 40(1):129–134

    Article  Google Scholar 

  • Vannice MA (1975b) Catalytic synthesis of hydrocarbons from hydrogen-carbon monoxide mixtures over the group VIII metals. I. Specific activities and product distributions of supported metals. J Catal 37(3):449–461

    Article  Google Scholar 

  • Watson PR, Somorjai GA (1981) The hydrogenation of carbon monoxide over rhodium oxide surfaces. J Catal 72(2):347–363

    Article  Google Scholar 

  • Watson PR, Somorjai GA (1982) The formation of oxygen-containing organic molecules by the hydrogenation of carbon monoxide over a lanthanum rhodate catalyst. J Catal 74(2):282–295

    Article  Google Scholar 

  • Wender I (1996) Reactions of synthesis gas. Fuel Process Technol 48(3):189–297

    Article  Google Scholar 

  • Yin H et al (2003) Influence of iron promoter on catalytic properties of Rh-Mn-Li/SiO2 for CO hydrogenation. Appl Catal A 243(1):155–164

    Article  Google Scholar 

  • Yoneda Y (1989) Progress in C1 chemistry in Japan. Kodansha/Elsevier, Tokyo

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. C. Chuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Chuang, S.S.C., Zhang, L. (2015). Conversion of Syngas to Fuels and Chemicals. In: Chen, WY., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation and Adaptation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6431-0_41-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6431-0_41-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6431-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Conversion of Syngas with Carbon Dioxide to Fuels
    Published:
    05 August 2021

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_41-3

  2. Original

    Conversion of Syngas to Fuels and Chemicals
    Published:
    28 December 2015

    DOI: https://doi.org/10.1007/978-1-4614-6431-0_41-2