Skip to main content

Abstract:

Inflammation is being increasingly recognized to play pathogenic roles in diverse neurological conditions and diseases including not only primary inflammatory diseases such as multiple sclerosis and HIV dementia but also primary degenerative disorders such as Alzheimer's and Parkinson's, as well as in brain injuries resulting from stroke and trauma. In the CNS, microglia, the resident macrophages, and astrocytes, the major endogenous glial cell type, together represent the main immunocompetent cell system that responds to any number of brain injuries, infections, and disease conditions, thereby mediating the local inflammatory response, i.e., “neuroinflammation.” The stimuli that activate these cells come in the form of microbial products, cytokines, products released by injured neurons, and disease-specific abnormal molecules. Activated glial cells in turn release several potentially neurotoxic mediators including cytokines, chemokines, reactive oxygen species, and nitric oxide, which target bystander neurons and oligodendrocytes. Although in acute settings, glial activation may be beneficial by clearing out debris and allowing repair to occur via released trophic factors, situations of their chronic response would entail deleterious neurodegenerative outcome. A better understanding of these processes would help devise appropriate neuroinflammation-targeted interventions against neurological diseases.

In this chapter, we review the mechanisms of glial cell activation by different stimuli, associated inflammatory signaling pathways, and the induced release of inflammatory mediators. This is followed by a review of the current literature highlighting the roles of glial cells in some of the common neurodegenerative and inflammatory diseases including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, prion disease, multiple sclerosis, and HIV encephalitis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ALS:

amyotrophic lateral sclerosis

APCs:

antigen-presenting cells

APP:

amyloid precursor protein

BBB:

blood brain barrier

BSE:

bovine spongiform encephalopathy

CJD:

Creutzfeldt–Jakob disease

CNTF:

ciliary neurotrophic factor

CSAIDs:

cytokine-suppressive anti-inflammatory drugs

DOPAC:

dihydroxyphenylacetic acid

ERK:

extracellular signal regulated kinase

FFI:

fatal familial insomnia

GAS:

gamma-activated sequence

GSS:

Gerstmann–Sträussler–Scheinker syndrome

HAART:

highly active antiretroviral therapy

HAD:

HIV-associated dementia

HERV:

human endogenous retroviruses

ICAM-1:

intercellular adhesion molecule-1

IKK:

IκB kinase

iNOS:

inducible NOS

IRAK:

IL-1R-associated kinase

IRF:

IFN-regulatory factor

JNK:

c-Jun N-terminal kinase

LDL:

low density lipoprotein

LIF:

leukemia inhibitory factor

LPS:

lipopolysaccharide

LRP:

lipoprotein (LDL)-like receptor related protein

LTA:

lipoteichoic acid

MAP:

mitogen-activated protein

MAPKAPK2:

MAP kinase–activated protein kinase-2

MAPKK:

MAPK kinase

MAPKKK:

MAPK kinase kinase

MMPs:

Matrix metalloproteases

MSKs:

mitogen- and stress-activated kinases

NCAM:

neural cell adhesion molecule

NFκB:

nuclear factor κB

NOSs:

nitric oxide synthases

ODN:

oligodesoxynucleotide

OSM:

oncostatin M

PAMPs:

pathogen-associated molecular pattern

PET:

positron emission tomography

RAGE:

receptor for advanced glycation end products

ROS:

reactive oxygen species

SNpc:

substantia nigra pars compacta

SOD1:

superoxide dismutase-1

STAT:

signal transducer and activator of transcription

TIR:

Toll/IL-1R

TLRs:

Toll-like receptors

VMAT2:

vesicular monoamine transporter 2

References

  • Akira S, Takeda K. 2004. Toll-like receptor signalling. Nat Rev Immunol 4: 499–511.

    CAS  PubMed  Google Scholar 

  • Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, et al. 2000. Inflammation and Alzheimer's disease. Neurobiol Aging 21: 383–421.

    CAS  PubMed  Google Scholar 

  • Alexianu ME, Kozovska M, Appel SH. 2001. Immune reactivity in a mouse model of familial ALS correlates with disease progression. Neurology 57: 1282–1289.

    CAS  PubMed  Google Scholar 

  • Almer G, Teismann P, Stevic Z, Halaschek-Wiener J, Deecke L, et al. 2002. Increased levels of the pro-inflammatory prostaglandin PGE2 in CSF from ALS patients. Neurology 58: 1277–1279.

    CAS  PubMed  Google Scholar 

  • Aloisi F. 2001. Immune function of microglia. Glia 36: 165–179.

    CAS  PubMed  Google Scholar 

  • Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE. 2005. Influence of HAART on HIV-related CNS disease and neuroinflammation. J Neuropathol Exp Neurol 64: 529–536.

    CAS  PubMed  Google Scholar 

  • Antony JM, van Marle G, Opii W, Butterfield DA, Mallet F, et al. 2004. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci 7: 1088–1095.

    CAS  PubMed  Google Scholar 

  • Armitage RJ, Fanslow WC, Strockbine L, Sato TA, Clifford KN, et al. 1992. Molecular and biological characterization of a murine ligand for CD40. Nature 357: 80–82.

    CAS  PubMed  Google Scholar 

  • Avila J. 2006. Tau phosphorylation and aggregation in Alzheimer's disease pathology. FEBS Lett 580: 2922–2927.

    CAS  PubMed  Google Scholar 

  • Babior BM. 2002. The leukocyte NADPH oxidase. Isr Med Assoc J 4: 1023–1024.

    CAS  PubMed  Google Scholar 

  • Bell JK, Mullen GE, Leifer CA, Mazzoni A, Davies DR, et al. 2003. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends Immunol 24: 528–533.

    CAS  PubMed  Google Scholar 

  • Bhat NR, Feinstein DL. 2006. NO and glial cell biology. Antioxid Redox Signal 8: 869–872.

    CAS  PubMed  Google Scholar 

  • Bhat NR, Zhang P, Lee JC, Hogan EL. 1998. Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18: 1633–1641.

    CAS  PubMed  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H. 2006. Alzheimer's disease. Lancet 368: 387–403.

    CAS  PubMed  Google Scholar 

  • Boillee S, Vande Velde C, Cleveland DW. 2006a. ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron 52: 39–59.

    CAS  Google Scholar 

  • Boillee S, Yamanaka K, Lobsiger CS, Copeland NG, Jenkins NA, et al. 2006b. Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312: 1389–1392.

    CAS  Google Scholar 

  • Breitner JC. 2003. NSAIDs and Alzheimer's disease: How far to generalise from trials? Lancet Neurol 2: 527.

    PubMed  Google Scholar 

  • Bsibsi M, Ravid R, Gveric D, van Noort JM. 2002. Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61: 1013–1021.

    CAS  PubMed  Google Scholar 

  • Cagnin A, Kassiou M, Meikle SR, Banati RB. 2006. In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scand Suppl 185: 107–114.

    CAS  PubMed  Google Scholar 

  • Cartier L, Hartley O, Dubois-Dauphin M, Krause KH. 2005. Chemokine receptors in the central nervous system: Role in brain inflammation and neurodegenerative diseases. Brain Res Brain Res Rev 48: 16–42.

    CAS  PubMed  Google Scholar 

  • Carvey PM, Chang Q, Lipton JW, Ling Z. 2003. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: A potential, new model of Parkinson's disease. Front Biosci 8: S826–S837.

    CAS  PubMed  Google Scholar 

  • Chaplin DD. 2006. 1. Overview of the human immune response. J Allergy Clin Immunol 117: S430–S435.

    CAS  PubMed  Google Scholar 

  • Coraci IS, Husemann J, Berman JW, Hulette C, Dufour JH, et al. 2002. CD36, a class B scavenger receptor, is expressed on microglia in Alzheimer's disease brains and can mediate production of reactive oxygen species in response to beta-amyloid fibrils. Am J Pathol 160: 101–112.

    CAS  PubMed  Google Scholar 

  • Cummings JL. 2004. Alzheimer's disease. N Engl J Med 351: 56–67.

    CAS  PubMed  Google Scholar 

  • Czlonkowska A, Kurkowska-Jastrzebska I, Czlonkowski A. 2000. Inflammatory changes in the substantia nigra and striatum following MPTP intoxication. Ann Neurol 48: 127

    CAS  PubMed  Google Scholar 

  • Delhalle S, Blasius R, Dicato M, Diederich M. 2004. A beginner's guide to NF-kappaB signaling pathways. Ann NY Acad Sci 1030: 1–13.

    CAS  PubMed  Google Scholar 

  • Deng X, Sriram S. 2005. Role of microglia in multiple sclerosis. Curr Neurol Neurosci Rep 5: 239–244.

    CAS  PubMed  Google Scholar 

  • Dong Y, Benveniste EN. 2001. Immune function of astrocytes. Glia 36: 180–190.

    CAS  PubMed  Google Scholar 

  • Dukic-Stefanovic S, Gasic-Milenkovic J, Deuther-Conrad W, Munch G. 2003. Signal transduction pathways in mouse microglia N-11 cells activated by advanced glycation endproducts (AGEs). J Neurochem 87: 44–55.

    CAS  PubMed  Google Scholar 

  • Ebert S, Gerber J, Bader S, Muhlhauser F, Brechtel K, et al. 2005. Dose-dependent activation of microglial cells by Toll-like receptor agonists alone and in combination. J Neuroimmunol 159: 87–96.

    CAS  PubMed  Google Scholar 

  • Estevez AG, Jordan J. 2002. Nitric oxide and superoxide, a deadly cocktail. Ann NY Acad Sci 962: 207–211.

    CAS  PubMed  Google Scholar 

  • Feany MB. 2004. New genetic insights into Parkinson's disease. N Engl J Med 351: 1937–1940.

    CAS  PubMed  Google Scholar 

  • Fioriti L, Angeretti N, Colombo L, De Luigi A, Colombo A, et al. 2007. Neurotoxic and gliotrophic activity of a synthetic peptide homologous to Gerstmann–Straussler–Scheinker disease amyloid protein. J Neurosci 27: 1576–1583.

    CAS  PubMed  Google Scholar 

  • Floden AM, Li S, Combs CK. 2005. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J Neurosci 25(10): 2566–2575.

    CAS  PubMed  Google Scholar 

  • Frohman EM, Racke MK, Raine CS. 2006. Multiple sclerosis–the plaque and its pathogenesis. N Engl J Med 354: 942–955.

    CAS  PubMed  Google Scholar 

  • Ganster RW, Taylor BS, Shao L, Geller DA. 2001. Complex regulation of human inducible nitric oxide synthase gene transcription by Stat 1 and NF-kappa B. Proc Natl Acad Sci USA 98: 8638–8643.

    CAS  PubMed  Google Scholar 

  • Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, et al. 2002. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: Relevance to Parkinson's disease. J Neurochem 81: 1285–1297.

    CAS  PubMed  Google Scholar 

  • Garcao P, Oliveira CR, Agostinho P. 2006. Comparative study of microglia activation induced by amyloid-beta and prion peptides: Role in neurodegeneration. J Neurosci Res 84: 182–193.

    CAS  PubMed  Google Scholar 

  • Garden GA, Guo W, Jayadev S, Tun C, Balcaitis S, et al. 2004. HIV associated neurodegeneration requires p53 in neurons and microglia. FASEB J 18: 1141–1143.

    CAS  PubMed  Google Scholar 

  • Gebicke-Haerter PJ, Spleiss O, Ren LQ, Li H, Dichmann S, et al. 2001. Microglial chemokines and chemokine receptors. Prog Brain Res 132: 525–532.

    CAS  PubMed  Google Scholar 

  • Giese A, Groschup MH, Hess B, Kretzschmar HA. 1995. Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol 5: 213–221.

    CAS  PubMed  Google Scholar 

  • Gosain A, Gamelli RL. 2005. A primer in cytokines. J Burn Care Rehabil 26: 7–12.

    PubMed  Google Scholar 

  • Gray F, Chretien F, Adle-Biassette H, Dorandeu A, Ereau T, et al. 1999. Neuronal apoptosis in Creutzfeldt–Jakob disease. J Neuropathol Exp Neurol 58: 321–328.

    CAS  PubMed  Google Scholar 

  • Hald A, Lotharius J. 2005. Oxidative stress and inflammation in Parkinson's disease: Is there a causal link? Exp Neurol 193: 279–290.

    CAS  PubMed  Google Scholar 

  • Hauser SL, Oksenberg JR. 2006. The neurobiology of multiple sclerosis: Genes, inflammation, and neurodegeneration. Neuron 52: 61–76.

    CAS  PubMed  Google Scholar 

  • Hayashi Y, Ishibashi H, Hashimoto K, Nakanishi H. 2006. Potentiation of the NMDA receptor-mediated responses through the activation of the glycine site by microglia secreting soluble factors. Glia 53: 660–668.

    PubMed  Google Scholar 

  • Hunot S, Boissiere F, Faucheux B, Brugg B, Mouatt-Prigent A, et al. 1996. Nitric oxide synthase and neuronal vulnerability in Parkinson's disease. Neuroscience 72: 355–363.

    CAS  PubMed  Google Scholar 

  • Husemann J, Loike JD, Anankov R, Febbraio M, Silverstein SC. 2002. Scavenger receptors in neurobiology and neuropathology: Their role on microglia and other cells of the nervous system. Glia 40: 195–205.

    PubMed  Google Scholar 

  • Husemann J, Silverstein SC. 2001. Expression of scavenger receptor class B, type I, by astrocytes and vascular smooth muscle cells in normal adult mouse and human brain and in Alzheimer's disease brain. Am J Pathol 158: 825–832.

    CAS  PubMed  Google Scholar 

  • Iribarren P, Chen K, Hu J, Zhang X, Gong W, et al. 2005. IL-4 inhibits the expression of mouse formyl peptide receptor 2, a receptor for amyloid beta1–42, in TNF-alpha-activated microglia. J Immunol 175: 6100–6106.

    CAS  PubMed  Google Scholar 

  • Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, et al. 2005. TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175: 4320–4330.

    CAS  PubMed  Google Scholar 

  • Jian Liu K, Rosenberg GA. 2005. Matrix metalloproteinases and free radicals in cerebral ischemia. Free Radic Biol Med 39: 71–80.

    CAS  PubMed  Google Scholar 

  • Kaltschmidt B, Widera D, Kaltschmidt C. 2005. Signaling via NF-kappaB in the nervous system. Biochim Biophys Acta 1745: 287–299.

    CAS  PubMed  Google Scholar 

  • Kawai T, Akira S. 2006. TLR signaling. Cell Death Differ 13: 816–825.

    CAS  PubMed  Google Scholar 

  • Kawas CH. 2003. Clinical practice. Early Alzheimer's disease. N Engl J Med 349: 1056–1063.

    CAS  PubMed  Google Scholar 

  • Kehry MR. 1996. CD40-mediated signaling in B cells. Balancing cell survival, growth, and death. J Immunol 156: 2345–2348.

    CAS  PubMed  Google Scholar 

  • Kim SH, Smith CJ, Van Eldik LJ. 2004. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging 25: 431–439.

    CAS  PubMed  Google Scholar 

  • Kim SU, de Vellis J. 2005. Microglia in health and disease. J Neurosci Res 81: 302–313.

    CAS  PubMed  Google Scholar 

  • Kim YS, Joh TH. 2006. Microglia, major player in the brain inflammation: Their roles in the pathogenesis of Parkinson's disease. Exp Mol Med 38: 333–347.

    CAS  PubMed  Google Scholar 

  • Kitazawa M, Oddo S, Yamasaki TR, Green KN, La Ferla FM. 2005. Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer's disease. J Neurosci 25: 8843–8853.

    CAS  PubMed  Google Scholar 

  • Knight R. 2006. Creutzfeldt–Jakob disease: A rare cause of dementia in elderly persons. Clin Infect Dis 43: 340–346.

    PubMed  Google Scholar 

  • Knott C, Stern G, Wilkin GP. 2000. Inflammatory regulators in Parkinson's disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 16: 724–739.

    CAS  PubMed  Google Scholar 

  • Kohutnicka M, Lewandowska E, Kurkowska-Jastrzebska I, Czlonkowski A, Czlonkowska A. 1998. Microglial and astrocytic involvement in a murine model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Immunopharmacology 39: 167–180.

    CAS  PubMed  Google Scholar 

  • Koistinaho M, Koistinaho J. 2002. Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia 40: 175–183.

    PubMed  Google Scholar 

  • Krivickas LS. 2003. Amyotrophic lateral sclerosis and other motor neuron diseases. Phys Med Rehabil Clin N Am 14: 327–345.

    PubMed  Google Scholar 

  • Kyosseva SV. 2004. Mitogen-activated protein kinase signaling. Int Rev Neurobiol 59: 201–220.

    CAS  PubMed  Google Scholar 

  • Ladeby R, Wirenfeldt M, Garcia-Ovejero D, Fenger C, Dissing-Olesen L, et al. 2005. Microglial cell population dynamics in the injured adult central nervous system. Brain Res Brain Res Rev 48: 196–206.

    CAS  PubMed  Google Scholar 

  • Lai AY, Todd KG. 2006. Microglia in cerebral ischemia: Molecular actions and interactions. Can J Physiol Pharmacol 84: 49–59.

    CAS  PubMed  Google Scholar 

  • Langston JW, Sastry S, Chan P, Forno LS, Bolin LM, et al. 1998. Novel alpha-synuclein-immunoreactive proteins in brain samples from the Contursi kindred, Parkinson's, and Alzheimer's disease. Exp Neurol 154: 684–690.

    CAS  PubMed  Google Scholar 

  • Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, et al. 1994. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372: 739–746.

    CAS  PubMed  Google Scholar 

  • Li Y, Liu L, Barger SW, Griffin WS. 2003. Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. J Neurosci 23: 1605–1611.

    CAS  PubMed  Google Scholar 

  • Lotharius J, Brundin P. 2002. Pathogenesis of Parkinson's disease: Dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3: 932–942.

    CAS  PubMed  Google Scholar 

  • Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, et al. 2000. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann Neurol 47: 707–717.

    CAS  PubMed  Google Scholar 

  • MacEwan DJ. 2002. TNF receptor subtype signalling: Differences and cellular consequences. Cell Signal 14: 477–492.

    CAS  PubMed  Google Scholar 

  • Mattson MP, Haughey NJ, Nath A. 2005. Cell death in HIV dementia. Cell Death Differ 12 (Suppl 1): 893–904.

    CAS  PubMed  Google Scholar 

  • Matute C, Domercq M, Sanchez-Gomez MV. 2006. Glutamate-mediated glial injury: Mechanisms and clinical importance. Glia 53: 212–224.

    PubMed  Google Scholar 

  • McGeer PL, McGeer EG. 1998. Glial cell reactions in neurodegenerative diseases: Pathophysiology and therapeutic interventions. Alzheimer Dis Assoc Disord 12 (Suppl 2): S1–S6.

    CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG. 2002. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve 26: 459–470.

    CAS  PubMed  Google Scholar 

  • Memet S. 2006. NF-kappaB functions in the nervous system: From development to disease. Biochem Pharmacol 72: 1180–1195.

    CAS  PubMed  Google Scholar 

  • Mirza B, Hadberg H, Thomsen P, Moos T. 2000. The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson's disease. Neuroscience 95: 425–432.

    CAS  PubMed  Google Scholar 

  • Mrak RE, Griffin WS. 2004. Welcome to the Journal of Neuroinflammation! J Neuroinflammation 1: 1.

    PubMed  Google Scholar 

  • Murphy PM, Baggiolini M, Charo IF, Hebert CA, Horuk R, et al. 2000. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev 52: 145–176.

    CAS  PubMed  Google Scholar 

  • Nakanishi H. 2003. Microglial functions and proteases. Mol Neurobiol 27: 163–176.

    CAS  PubMed  Google Scholar 

  • Nedergaard M, Ransom B, Goldman SA. 2003. New roles for astrocytes: Redefining the functional architecture of the brain. Trends Neurosci 26: 523–530.

    CAS  PubMed  Google Scholar 

  • Newman EA. 2003. New roles for astrocytes: Regulation of synaptic transmission. Trends Neurosci 26: 536–542.

    CAS  PubMed  Google Scholar 

  • Nguyen MD, Julien JP, Rivest S. 2001. Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: No requirement for proapoptotic interleukin-1beta in neurodegeneration. Ann Neurol 50: 630–639.

    CAS  PubMed  Google Scholar 

  • Nimmerjahn A, Kirchhoff F, Helmchen F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308: 1314–1318.

    CAS  PubMed  Google Scholar 

  • Nortje J, Menon DK. 2004. Traumatic brain injury: Physiology, mechanisms, and outcome. Curr Opin Neurol 17: 711–718.

    PubMed  Google Scholar 

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG. 2000. Multiple sclerosis. N Engl J Med 343: 938–952.

    CAS  PubMed  Google Scholar 

  • Nutt JG, Wooten GF. 2005. Clinical practice. Diagnosis and initial management of Parkinson's disease. N Engl J Med 353: 1021–1027.

    CAS  PubMed  Google Scholar 

  • O'Shea JJ, Gadina M, Schreiber RD. 2002. Cytokine signaling in 2002: New surprises in the Jak/Stat pathway. Cell 109 (Suppl): S121–S131.

    PubMed  Google Scholar 

  • Obrenovitch TP. 2001. Quinolinic acid accumulation during neuroinflammation. Does it imply excitotoxicity? Ann NY Acad Sci 939: 1–10.

    CAS  PubMed  Google Scholar 

  • Olson JK, Miller SD. 2004. Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173: 3916–3924.

    CAS  PubMed  Google Scholar 

  • Pahl HL. 1999. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853–6866.

    CAS  PubMed  Google Scholar 

  • Pasare C, Medzhitov R. 2005. Toll-like receptors: Linking innate and adaptive immunity. Adv Exp Med Biol 560: 11–18.

    CAS  PubMed  Google Scholar 

  • Pawate S, Shen Q, Bhat NR. 2006. C-Jun N-terminal kinase (JNK) regulation of iNOS expression in glial cells: Predominant role of JNK1 isoform. Antioxid Redox Signal 8: 903–909.

    CAS  PubMed  Google Scholar 

  • Pawate S, Shen Q, Fan F, Bhat NR. 2004. Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77: 540–551.

    CAS  PubMed  Google Scholar 

  • Perry VH, Cunningham C, Boche D. 2002. Atypical inflammation in the central nervous system in prion disease. Curr Opin Neurol 15: 349–354.

    PubMed  Google Scholar 

  • Pestka S, Krause CD, Walter MR. 2004. Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202: 8–32.

    CAS  PubMed  Google Scholar 

  • Qi M, Elion EA. 2005. MAP kinase pathways. J Cell Sci 118: 3569–3572.

    CAS  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, et al. 2007. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55: 453–462.

    PubMed  Google Scholar 

  • Ransom B, Behar T, Nedergaard M. 2003. New roles for astrocytes (stars at last). Trends Neurosci 26: 520–522.

    CAS  PubMed  Google Scholar 

  • Ricciarelli R, D'Abramo C, Zingg JM, Giliberto L, Markesbery W, et al. 2004. CD36 overexpression in human brain correlates with beta-amyloid deposition but not with Alzheimer's disease. Free Radic Biol Med 36: 1018–1024.

    CAS  PubMed  Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, et al. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59–62.

    CAS  PubMed  Google Scholar 

  • Rosenberg GA. 2002. Matrix metalloproteinases in neuroinflammation. Glia 39: 279–291.

    PubMed  Google Scholar 

  • Rosenberg GA. 2005. Matrix metalloproteinases biomarkers in multiple sclerosis. Lancet 365: 1291–1293.

    PubMed  Google Scholar 

  • Rowland LP, Shneider NA. 2001. Amyotrophic lateral sclerosis. N Engl J Med 344: 1688–1700.

    CAS  PubMed  Google Scholar 

  • Rubinfeld H, Seger R. 2005. The ERK cascade: A prototype of MAPK signaling. Mol Biotechnol 31: 151–174.

    CAS  PubMed  Google Scholar 

  • Samii A, Nutt JG, Ransom BR. 2004. Parkinson's disease. Lancet 363: 1783–1793.

    CAS  PubMed  Google Scholar 

  • Sandor F, Buc M. 2005. Toll-like receptors. I. Structure, function and their ligands. Folia Biol (Praha) 51: 148–157.

    CAS  Google Scholar 

  • Sargsyan SA, Monk PN, Shaw PJ. 2005. Microglia as potential contributors to motor neuron injury in amyotrophic lateral sclerosis. Glia 51: 241–253.

    PubMed  Google Scholar 

  • Schindler C, Brutsaert S. 1999. Interferons as a paradigm for cytokine signal transduction. Cell Mol Life Sci 55: 1509–1522.

    CAS  PubMed  Google Scholar 

  • Schwartz M, Butovsky O, Bruck W, Hanisch UK. 2006. Microglial phenotype: Is the commitment reversible? Trends Neurosci 29: 68–74.

    CAS  PubMed  Google Scholar 

  • Shamoto-Nagai M, Maruyama W, Yi H, Akao Y, Tribl F, et al. 2006. Neuromelanin induces oxidative stress in mitochondria through release of iron: Mechanism behind the inhibition of 26S proteasome. J Neural Transm 113: 633–644.

    CAS  PubMed  Google Scholar 

  • Slezak M, Pfrieger FW. 2003. New roles for astrocytes: Regulation of CNS synaptogenesis. Trends Neurosci 26: 531–535.

    CAS  PubMed  Google Scholar 

  • Stirling DP, Koochesfahani KM, Steeves JD, Tetzlaff W. 2005. Minocycline as a neuroprotective agent. Neuroscientist 11: 308–322.

    CAS  PubMed  Google Scholar 

  • Streit WJ. 2004. Microglia and Alzheimer's disease pathogenesis. J Neurosci Res 77: 1–8.

    CAS  PubMed  Google Scholar 

  • Streit WJ. 2006. Microglial senescence: Does the brain's immune system have an expiration date? Trends Neurosci 29: 506–510.

    CAS  PubMed  Google Scholar 

  • Stylianou E, Saklatvala J. 1998. Interleukin-1. Int J Biochem Cell Biol 30: 1075–1079.

    CAS  PubMed  Google Scholar 

  • Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, et al. 2006. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 281: 21362–21368.

    CAS  PubMed  Google Scholar 

  • Teismann P, Tieu K, Choi DK, Wu DC, Naini A, et al. 2003. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci USA 100: 5473–5478.

    CAS  PubMed  Google Scholar 

  • Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, et al. 2003. Pathogenic role of glial cells in Parkinson's disease. Mov Disord 18: 121–129.

    PubMed  Google Scholar 

  • Troost D, Claessen N, van den Oord JJ, Swaab DF, de Jong JM. 1993. Neuronophagia in the motor cortex in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 19: 390–397.

    CAS  PubMed  Google Scholar 

  • Tuppo EE, Arias HR. 2005. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 37: 289–305.

    CAS  PubMed  Google Scholar 

  • Turner MR, Cagnin A, Turkheimer FE, Miller CC, Shaw CE, et al. 2004. Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: An [11C](R)-PK11195 positron emission tomography study. Neurobiol Dis 15: 601–609.

    CAS  PubMed  Google Scholar 

  • Urushitani M, Sik A, Sakurai T, Nukina N, Takahashi R, et al. 2006. Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis. Nat Neurosci 9: 108–118.

    CAS  PubMed  Google Scholar 

  • van Kooten C, Banchereau J. 2000. CD40-CD40 ligand. J Leukoc Biol 67: 2–17.

    PubMed  Google Scholar 

  • Vilhardt F. 2005. Microglia: Phagocyte and glia cell. Int J Biochem Cell Biol 37: 17–21.

    CAS  PubMed  Google Scholar 

  • Vlahopoulos S, Zoumpourlis VC. 2004. JNK: A key modulator of intracellular signaling. Biochemistry (Mosc) 69: 844–854.

    CAS  Google Scholar 

  • Vukosavic S, Dubois-Dauphin M, Romero N, Przedborski S. 1999. Bax and Bcl-2 interaction in a transgenic mouse model of familial amyotrophic lateral sclerosis. J Neurochem 73: 2460–2468.

    CAS  PubMed  Google Scholar 

  • Wang DS, Dickson DW, Malter JS. 2006. Beta-amyloid degradation and Alzheimer's disease. J Biomed Biotechnol 2006: 58406.

    PubMed  Google Scholar 

  • Weydt P, Moller T. 2005. The role of microglial cells in amyotrophic lateral sclerosis. Phys Med Rehabil Clin N Am 16: 1081–1090, xi.

    Google Scholar 

  • Wilms H, Rosenstiel P, Sievers J, Deuschl G, Zecca L, et al. 2003. Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: Implications for Parkinson's disease. FASEB J 17: 500–502.

    CAS  PubMed  Google Scholar 

  • Wu DC, Teismann P, Tieu K, Vila M, Jackson-Lewis V, et al. 2003. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Proc Natl Acad Sci USA 100: 6145–6150.

    CAS  PubMed  Google Scholar 

  • Zarubin T, Han J. 2005. Activation and signaling of the p38 MAP kinase pathway. Cell Res 15: 11–18.

    CAS  PubMed  Google Scholar 

  • Zecca L, Zucca FA, Albertini A, Rizzio E, Fariello RG. 2006. A proposed dual role of neuromelanin in the pathogenesis of Parkinson's disease. Neurology 67: S8–S11.

    CAS  PubMed  Google Scholar 

  • Zhang W, Wang T, Pei Z, Miller DS, Wu X, et al. 2005. Aggregated alpha-synuclein activates microglia: A process leading to disease progression in Parkinson's disease. FASEB J 19: 533–542.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Artelt M, Burnet M, Trautmann K, et al. 2006. Early infiltration of CD8+ macrophages/microglia to lesions of rat traumatic brain injury. Neuroscience 141: 637–644.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from National Institutes of Health (R01NS051575) and National Institute on Aging (1P01 AG 023630-subproject 3) awarded to NRB.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this entry

Cite this entry

Pawate, S., Bhat, N.R. (2008). Role of Glia in CNS Inflammation. In: Lajtha, A., Galoyan, A., Besedovsky, H.O. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30398-7_14

Download citation

Publish with us

Policies and ethics