Skip to main content

ATF2

  • Reference work entry
  • First Online:
Encyclopedia of Signaling Molecules
  • 172 Accesses

Historical Background

Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA-binding proteins located on human chromosome 2q32 and was discovered by Maekawa et al. in 1989 (Maekawa et al. 1989). The ATF2 protein consists of 505 amino acids, with phosphorylation sites near the C-terminus at serine residues 472 and 480 in the mouse protein and serine residues 490 and 498 in the human protein. In response to double-stranded DNA breaks, the ataxia telangiectasia-mutant (Yosaatmadja et al. 2015) protein kinase activates ATF2 (Bhoumik et al. 2005). The ATF family of proteins includes seven subtypes based on sequence similarity: ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 (Hummler et al. 1994). A schematic of the ATF2 protein is shown in Fig. 1.

ATF2, Fig. 1
figure 2132 figure 2132

Schematic presentation of the ATF2 family protein. Structural, functional domains and comparison of ATF2 family are shown. The leucine zipper domain contains a basic region mediating sequence-specific...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 4,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arora H, Qureshi R, et al. Coordinated regulation of ATF2 by miR-26b in gamma-irradiated lung cancer cells. PLoS One. 2011;6(8):e23802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhoumik A, Takahashi S, et al. ATM-dependent phosphorylation of ATF2 is required for the DNA damage response. Mol Cell. 2005;18(5):577–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhoumik A, Fichtman B, et al. Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. Proc Natl Acad Sci USA. 2008;105(5):1674–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bickford JS, Newsom KJ, et al. Induction of group IVC phospholipase A2 in allergic asthma: transcriptional regulation by TNFalpha in bronchoepithelial cells. Biochem J. 2012;442(1):127–37.

    Article  PubMed  CAS  Google Scholar 

  • Blasius AL, Beutler B. Intracellular toll-like receptors. Immunity. 2010;32(3):305–15.

    Article  PubMed  CAS  Google Scholar 

  • Breitwieser W, Lyons S, et al. Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells. Genes Dev. 2007;21(16):2069–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brinkman BM, Telliez JB, et al. Engagement of tumor necrosis factor (TNF) receptor 1 leads to ATF-2- and p38 mitogen-activated protein kinase-dependent TNF-alpha gene expression. J Biol Chem. 1999;274(43):30882–6.

    Article  PubMed  CAS  Google Scholar 

  • Choi CY, Choi BH, et al. Activating transcription factor 2 (ATF2) down-regulates hepatitis B virus X promoter activity by the competition for the activating protein 1 binding site and the formation of the ATF2-Jun heterodimer. J Biol Chem. 1997;272(27):16934–9.

    Article  PubMed  CAS  Google Scholar 

  • Claps G, Cheli Y, et al. A transcriptionally inactive ATF2 variant drives melanomagenesis. Cell Rep. 2016;15(9):1884–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Cesare D, Vallone D, et al. Heterodimerization of c-Jun with ATF-2 and c-Fos is required for positive and negative regulation of the human urokinase enhancer. Oncogene. 1995;11(2):365–76.

    PubMed  CAS  Google Scholar 

  • De Graeve F, Bahr A, et al. Role of the ATFa/JNK2 complex in Jun activation. Oncogene. 1999;18(23):3491–500.

    Article  PubMed  CAS  Google Scholar 

  • Dinarello CA. Proinflammatory cytokines. Chest. 2000;118(2):503–8.

    Article  PubMed  CAS  Google Scholar 

  • Duffey D, Dolgilevich S, et al. Activating transcription factor-2 in survival mechanisms in head and neck carcinoma cells. Head Neck. 2011;33(11):1586–99.

    Article  PubMed  Google Scholar 

  • Endo M, Su L, et al. Activating transcription factor 2 in mesenchymal tumors. Hum Pathol. 2014;45(2):276–84.

    Article  PubMed  CAS  Google Scholar 

  • Fang JQ, Du JY, et al. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats. Mol Pain. 2013;9:13.

    Article  CAS  Google Scholar 

  • Gozdecka M, Lyons S, et al. JNK suppresses tumor formation via a gene-expression program mediated by ATF2. Cell Rep. 2014;9(4):1361–74.

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Du X, et al. JNK-mediated activation of ATF2 contributes to dopaminergic neurodegeneration in the MPTP mouse model of Parkinson’s disease. Exp Neurol. 2016;277:296–304.

    Article  PubMed  CAS  Google Scholar 

  • Hummler E, Cole TJ, et al. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc Natl Acad Sci USA. 1994;91(12):5647–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ibrahim SA, Yip GW, et al. Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase- and E-cadherin-dependent mechanism. Int J Cancer. 2012;131(6):E884–96.

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Bhatia HS, et al. microRNA-26a modulates inflammatory response induced by toll-like receptor 4 stimulation in microglia. J Neurochem. 2015;135(6):1189–202.

    Article  PubMed  CAS  Google Scholar 

  • Liao H, Hyman MC, et al. cAMP/CREB-mediated transcriptional regulation of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) expression. J Biol Chem. 2010;285(19):14791–805.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Licht AH, Pein OT, et al. JunB is required for endothelial cell morphogenesis by regulating core-binding factor beta. J Cell Biol. 2006;175(6):981–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin CC, Hsieh HL, et al. Upregulation of COX-2/PGE2 by ET-1 mediated through Ca2+-dependent signals in mouse brain microvascular endothelial cells. Mol Neurobiol. 2014;49(3):1256–69.

    Article  PubMed  CAS  Google Scholar 

  • Livingstone C, Patel G, et al. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J. 1995;14(8):1785–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv G, Hu Z, et al. MicroRNA-451 regulates activating transcription factor 2 expression and inhibits liver cancer cell migration. Oncol Rep. 2014;32(3):1021–8.

    Article  PubMed  CAS  Google Scholar 

  • Maekawa T, Sakura H, et al. Leucine zipper structure of the protein CRE-BP1 binding to the cyclic AMP response element in brain. EMBO J. 1989;8(7):2023–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maekawa T, Jin W, et al. The role of ATF-2 family transcription factors in adipocyte differentiation: antiobesity effects of p38 inhibitors. Mol Cell Biol. 2010;30(3):613–25.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda S, Maekawa T, et al. Identification of the functional domains of the transcriptional regulator CRE-BP1. J Biol Chem. 1991;266(27):18188–93.

    PubMed  CAS  Google Scholar 

  • Miyata Y, Fukuhara A, et al. Expression of activating transcription factor 2 in inflammatory macrophages in obese adipose tissue. Obesity (Silver Spring). 2013;21(4):731–6.

    Article  CAS  Google Scholar 

  • Nair S, Barve A, et al. Regulation of Nrf2- and AP-1-mediated gene expression by epigallocatechin-3-gallate and sulforaphane in prostate of Nrf2-knockout or C57BL/6J mice and PC-3 AP-1 human prostate cancer cells. Acta Pharmacol Sin. 2010;31(9):1223–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nomura N, Zu YL, et al. Isolation and characterization of a novel member of the gene family encoding the cAMP response element-binding protein CRE-BP1. J Biol Chem. 1993;268(6):4259–66.

    PubMed  CAS  Google Scholar 

  • Ouwens DM, de Ruiter ND, et al. Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J. 2002;21(14):3782–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pearson AG, Curtis MA, et al. Activating transcription factor 2 expression in the adult human brain: association with both neurodegeneration and neurogenesis. Neuroscience. 2005;133(2):437–51.

    Article  PubMed  CAS  Google Scholar 

  • Reimold AM, Kim J, et al. Decreased immediate inflammatory gene induction in activating transcription factor-2 mutant mice. Int Immunol. 2001;13(2):241–8.

    Article  PubMed  CAS  Google Scholar 

  • Rudraraju B, Droog M, et al. Phosphorylation of activating transcription factor-2 (ATF-2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Breast Cancer Res Treat. 2014;147(2):295–309.

    Article  PubMed  CAS  Google Scholar 

  • Sano Y, Tokitou F, et al. CBP alleviates the intramolecular inhibition of ATF-2 function. J Biol Chem. 1998;273(44):29098–105.

    Article  PubMed  CAS  Google Scholar 

  • Shen T, Yang WS, et al. AP-1/IRF-3 targeted anti-inflammatory activity of andrographolide isolated from Andrographis paniculata. Evid Based Complement Alternat Med. 2013;2013:210736.

    PubMed  PubMed Central  Google Scholar 

  • Takeda J, Maekawa T, et al. Expression of the CRE-BP1 transcriptional regulator binding to the cyclic AMP response element in central nervous system, regenerating liver, and human tumors. Oncogene. 1991;6(6):1009–14.

    PubMed  CAS  Google Scholar 

  • Vlahopoulos SA, Logotheti S, et al. The role of ATF-2 in oncogenesis. Bioessays. 2008;30(4):314–27.

    Article  PubMed  CAS  Google Scholar 

  • Wu DS, Chen C, et al. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. J Exp Clin Cancer Res. 2016;35(1):108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Y, Liu Z, et al. The effect of JDP2 and ATF2 on the epithelial-mesenchymal transition of human pancreatic cancer cell lines. Pathol Oncol Res. 2012;18(3):571–7.

    Article  PubMed  CAS  Google Scholar 

  • Yosaatmadja Y, Patterson AV, et al. The 1.65 A resolution structure of the complex of AZD4547 with the kinase domain of FGFR1 displays exquisite molecular recognition. Acta Crystallogr D Biol Crystallogr. 2015;71(Pt 3):525–33.

    Article  PubMed  CAS  Google Scholar 

  • You Z, Zhou Y, et al. Activating transcription factor 2 expression mediates cell proliferation and is associated with poor prognosis in human non-small cell lung carcinoma. Oncol Lett. 2016;11(1):760–6.

    Article  PubMed  CAS  Google Scholar 

  • Yu T, Li YJ, et al. The regulatory role of activating transcription factor 2 in inflammation. Mediators Inflamm. 2014;2014:950472.

    PubMed  PubMed Central  Google Scholar 

  • Zhang R, Luo H, et al. MiR-622 suppresses proliferation, invasion and migration by directly targeting activating transcription factor 2 in glioma cells. J Neuro-Oncol. 2015;121(1):63–72.

    Article  CAS  Google Scholar 

  • Zhang S, Gao L, et al. miRNA-204 suppresses human non-small cell lung cancer by targeting ATF2. Tumour Biol. 2016;37(8):11177–86.

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Li Y, et al. Helicobacter pylori enhances CIP2A expression and cell proliferation via JNK2/ATF2 signaling in human gastric cancer cells. Int J Mol Med. 2014;33(3):703–10.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Youl Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cho, J.Y., Yu, T., Yang, Y. (2018). ATF2. In: Choi, S. (eds) Encyclopedia of Signaling Molecules. Springer, Cham. https://doi.org/10.1007/978-3-319-67199-4_101938

Download citation

Publish with us

Policies and ethics