Skip to main content

Evolution of Hearing and Balance

  • Living reference work entry
  • First Online:
Encyclopedia of Evolutionary Psychological Science
  • 104 Accesses

Synonyms

Evolution of mammalian hearing; Sound perception; The traveling sound; The peripheral and central auditory system; Vestibular system

Definition

The evolution of the human ear, the auditory system, and balance.

Introduction

To have a solid understanding of the capacity to hear and listen to sounds, there must be an education of how the sound firstly travels from its source to our brain. Therefore, there will be a brief discussion of the direction of sounds, followed by an evolutionary standpoint of the middle ear’s ossicles based on Reichert-Gaupp’s theory and more research on the evolution of the mammalian ear.

Next will be a brief discussion of the anatomical structures of the peripheral auditory system, namely the outer (external) ear, the middle ear, and the inner ear, along with its inner most important structures, the cochlea and the otoliths.

Important for keeping balance and movement is the role of the semicircular canals. Also, there will be a brief discussion on the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Avan, P., Giraudet, F., & Büki, B. (2015). Importance of binaural hearing. Audiology and Neurotology, 20(Suppl. 1), 3–6.

    Article  PubMed  Google Scholar 

  • Balkany, T. J., & Brown, K. D. (2017). The ear book. A complete guide to ear disorders and health. Maryland: Johns Hopkins University Press.

    Google Scholar 

  • Bavi, O., Nikolaev, Y., Bavi, N., Martinac, A., Ridone, P., Martinac, B., et al. (2017). Chapter 4: Principles of Mechanosensing at the membrane Interface. In J.M. Ruysschaert & R. Epand (Eds.), The biophysics of cell membranes. Biological consequences, Springer Series in Biophysics (Vol. 19, pp. 85–120). Singapore: Springer. https://doi.org/10.1007/978-981-10-6244-5.

  • Beisel, K. W., Wang-Lundberg, Y., Maklad, A., & Fritzsch, B. (2005). Development and evolution of the vestibular sensory apparatus of the mammalian ear. Journal of Vestibular Research, 15(5,6), 225–241.

    PubMed  PubMed Central  Google Scholar 

  • Bilecen, D., Seifritz, E., Scheffler, K., & Schulte, A. (2002). Amplitopicity of the human auditory cortex: An fMRI study. NeuroImage, 17, 710–718.

    Article  PubMed  Google Scholar 

  • Boulpaep, E. L., & Boron, W. F. (2005). Medical physiology. Oxford: Elsevier.

    Google Scholar 

  • Chandrasekhar, S. (2013). The assessment of balance and dizziness in the TBI patient. NeuroRehabilitation, 32, 445–454.

    PubMed  Google Scholar 

  • Chang, R., & Khana, S. (2013). Anatomy of the vestibular system: A review. NeuroRehabilitation, 32, 437–443. https://doi.org/10.3233/NRE-130866.

    PubMed  Google Scholar 

  • Chen, Z., Li, J., Liu, M., & Ma, L. (2013). Structural connectivity between visual cortex and auditory cortex in healthy adults: A diffusion tensor imaging study. Journal of Southern Medical University, 33(3), 338–341.

    PubMed  Google Scholar 

  • Dallos, P. (2008). Cochlear amplification, outer hair cells and Prestin. Current Opinion in Neurobiology, 18(4), 370–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delmas, P., & Coste, B. (2013). Mechano-gated ion channels in sensory systems. Cell, 155(2), 278–284.

    Article  PubMed  Google Scholar 

  • Demanez, J. P., & Demanez, L. (2003). Anatomophysiology of the central auditory nervous system: Basic concepts. Acta Oto-Rhino-Laryngologica Belgica, 57(4), 227–236.

    PubMed  Google Scholar 

  • Fetter, M., Haslwanter, T., Bork, M., & Dichgans, J. (1999). New insights into positional alcohol nystagmus using three-dimensional eye-movement analysis. Annals of Neurology, 45(2), 216–223.

    Article  PubMed  Google Scholar 

  • Franchini, L. F., & Elgoyhen, A. B. (2006). Adaptive evolution in mammalian proteins involved in Cochlear outer hair cell Electromotility. Molecular Phylogenetics and Evolution, 41(3), 622–635.

    Article  PubMed  Google Scholar 

  • Fritzsch, B. (1987). Inner ear of the coelacanth fish Latimeria has tetrapod affinities. Nature, 327(6118), 153–154.

    Article  PubMed  Google Scholar 

  • Gelfand, S. A. (2010). Chapter 4: Cochlear mechanisms and processes. In S. A. Gelfand (Ed.), Hearing: An introduction to psychological and physiological acoustics (5th ed., pp. 72–102). London: Informa Healthcare.

    Google Scholar 

  • Hackett, T. A. (2015). Anatomic organization of the auditory cortex. Handbook of Clinical Neurology, 129, 27–53. https://doi.org/10.1016/B978-0-444-62630-1.00002-0.

    Article  PubMed  Google Scholar 

  • Hafstrom, A., Modig, F., Karlberg, M., & Fransson, P. A. (2007). Increased visual dependence and otolith dysfunction with alcohol intoxication. Neuroreport, 18(4), 391–394.

    Article  PubMed  Google Scholar 

  • Hain, T. C., & Helminsky, J. O. (2007). Anatomy and physiology of the normal vestibular system. In Vestibular rehabilitation (3rd ed., p. 214). Philadelphia: FA Davis Company.

    Google Scholar 

  • Hanson, J., Anson, B., & Strickland, E. (1962). Branchial sources of auditory Ossicles in ManI. Literature. Archives of Otolaryngology, 76(2), 100–122. https://doi.org/10.1001/archotol.1962.00740050106003.

    Article  PubMed  Google Scholar 

  • Hawley, M. L., Litovsky, R. Y., & Culling, J. F. (2004). The benefit of binaural hearing in a cocktail party: Effect of location and type of interferer. The Journal of the Acoustical Society of America, 115(2), 833–843.

    Article  PubMed  Google Scholar 

  • Hosokawa, Y., Sugimoto, S., Kubota, M., Horikawa, J., & Ojima, H. (2017). Auditory-visual integration in fields of the auditory cortex. Hearing Research, 346, 25–33. https://doi.org/10.1016/j.heares.2017.01.012.

    Article  PubMed  Google Scholar 

  • Hoy, R. R. (2012). Convergent evolution of hearing. Science, 338(6109), 894–895.

    Article  PubMed  Google Scholar 

  • Ikeda, Y., Sasa, M., & Takaori, S. (1980). Selective effect of ethanol on the vestibular nucleus neurons in the cat. The Japanese Journal of Pharmacology, 30, 665–673.

    Article  PubMed  Google Scholar 

  • Isaa, J. B., Haeffele, B. D., Young, E. D., & Yue, D. T. (2017). Multiscale mapping of frequency sweep rate in mouse auditory cortex. Hearing Research, 344, 207–222.

    Article  Google Scholar 

  • Jelliffe, S. E. (1920). Magnus Gustaf Retzius. The Journal of Nervous and Mental Disease, 51(3), 311.

    Article  Google Scholar 

  • Johnsson, L. G., & Hawkins, J. E. (1967). A direct approach to Cochlear anatomy and pathology in man. Archives of Otolaryngology, 85(6), 599–613.

    Article  PubMed  Google Scholar 

  • Kita, T., Freeman, S., & Ladher, R. (2013). Chapter 1: The birth of a Mechanosensor: Development of vertebrate hair cells. In A. Zubair & R. Saima (Eds.), Inner ear development and hearing loss (pp. 1–24). New York: Nova Science Publishers.

    Google Scholar 

  • Köppl, C. (2011). Birds–same thing, but different? Convergent evolution in the avian and mammalian auditory systems provides informative comparative models. Hearing Research, 273(1), 65–71.

    Article  PubMed  Google Scholar 

  • Kung, C. (2005). A possible unifying principle for mechanosensation. Nature, 436(7051), 647–654.

    Article  PubMed  Google Scholar 

  • Li, Y., Liu, Z., Shi, P., & Zhang, J. (2010). The hearing gene Prestin unites Echolocating bats and whales. Current Biology, 20(2), R55–R56.

    Article  PubMed  Google Scholar 

  • Lithari, C., & Weisz, N. (2017). Amplitude modulation rate dependent topographic Organization of the auditory steady-state response in human auditory cortex. Hearing Research, 354, 102–108. https://doi.org/10.1016/j.heares.2017.09.003.

    Article  PubMed  Google Scholar 

  • Maier, W., & Ruf, I. (2016). Evolution of the mammalian middle ear: A historical review. Journal of Anatomy, 228(2), 270–283. https://doi.org/10.1111/joa.12379/full.

    Article  PubMed  Google Scholar 

  • Manley, G. A. (2010). An evolutionary perspective on middle ears. Hearing Research, 263, 3–8.

    Article  PubMed  Google Scholar 

  • Manley, G. A. (2017). The mammalian cretaceous Cochlear revolution. Hearing Research, 352, 23–29.

    Article  PubMed  Google Scholar 

  • Masterton, B., Heffner, H., & Ravizza, R. (1968). The evolution of human hearing. The Journal of the Acoustical Society of America, 45(4), 966–985.

    Article  Google Scholar 

  • Modig, F., Fransson, P. A., Magnusson, M., & Patel, M. (2012a). Blood alcohol concentration at 0.06 and 0.10% causes a complex multifaceted deterioration of body movement control. Alcohol, 46(1), 75–88.

    Article  PubMed  Google Scholar 

  • Modig, F., Patel, M., Magnusson, M., & Fransson, P. A. (2012b). Study I: Effects of 0.06% and 0.10% blood alcohol concentration on human postural control. Gait & Posture, 35(3), 410–418.

    Article  Google Scholar 

  • Moller, A. R. (2013). Hearing. Anatomy, physiology, and disorders of the auditory system (3rd ed.). San Diego: Plural Publishing.

    Google Scholar 

  • Montealegre-z, F., Jonsson, T., Robson-Brown, K. A., Postles, M., & Robert, D. (2012). Convergent evolution between insect and mammalian audition. Science, 338(6109), 968–971.

    Article  PubMed  Google Scholar 

  • Moore, B. (2001). Hearing and psychoacoustics. Grove Music Online. Retrieved January 08, 2018, from Grove Music Online. Hearing and psychoacoustics: http://www.oxfordmusiconline.com/grovemusic/view/10.1093/gmo/9781561592630.001.0001/omo-9781561592630-e-0000042531.

  • Moore, D. (1991). Anatomy and physiology of binaural hearing. Audiology, 30(3), 125–134.

    Article  PubMed  Google Scholar 

  • Munir, N., & Clarke, R. (2013). Ear, nose and throat at a glance. West Sussex: Wiley-Blackwell.

    Google Scholar 

  • Nieschalk, M., Ortmann, C., West, A., Schmäl, F., Stoll, W., & Fechner, G. (1999). Effects of alcohol on body-sway patterns in human subjects. International Journal of Legal Medicine, 112(4), 253–260.

    Article  PubMed  Google Scholar 

  • Oghalai, J. S., & Brownell, W. E. (2012). Chapter 44. Anatomy & Physiology of the ear. In A. Lalwani (Ed.), Current Diagnosis & Treatment in otolaryngology – Head & Neck Surgery (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Otto, H. (1984). An error in the Reichert-Gaupp theory. A contribution to onto- and Phylogenesis f the temporomandibular joint and ear Ossicles in mammals. Anatomischer Anzeiger, 155(1–5), 223–238.

    PubMed  Google Scholar 

  • Pickles, J. O. (2012). An introduction to the physiology of hearing (4th ed.). Bingley: Emerald Group Publishing Limited.

    Google Scholar 

  • Polley, D., Nelken, I., & Kanold, P. (2014). Local versus global scales of Organization in Auditory Cortex. Trends in Neurosciences, 37(9), 502–510.

    Article  PubMed  PubMed Central  Google Scholar 

  • Radojevic, V., Levano, S., Brand, Y., Naldi, A., Pak, K., Ryan, A., et al. (2015). All Akt isoforms (Akt1, Akt2, Akt3) are involved in normal hearing, but only Akt2 and Akt3 are involved in auditory hair cell survival in the mammalian inner ear. PLoS One, 10, 1–13. https://doi.org/10.1371/journal.pone.0121599.

    Google Scholar 

  • Reichert, C. (1837). Ãœber die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Arch Anat Physiol Wiss Med, 1837, 120–222.

    Google Scholar 

  • Richardson, G. P., de Monvel, J. B., & Petit, C. (2011). How the genetics of deafness illuminates auditory physiology. Annual Review of Physiology, 73, 311–334.

    Article  PubMed  Google Scholar 

  • Romand, R., & Ehret, G. (1997). The central auditory system. New York/Oxford: Oxford University Press.

    Google Scholar 

  • Russell, I. J., & Sellick, P. M. (1978). Intracellular studies of hair cells in the mammalian cochlea. The Journal of Physiology, 284(1), 261–290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saenz, M., & Langers, D. R. (2014). Tonotopic mapping of human auditory cortex. Hearing Research, 307, 42–52.

    Article  PubMed  Google Scholar 

  • Seikel, A. J., King, D. W., & Drumright, D. G. (2010a). Chapter 9: Anatomy of hearing. In Anatomy & Physiology for speech, language, and hearing (4th ed., pp. 447–478). New York/Delmar: Cengage Learning.

    Google Scholar 

  • Seikel, A. J., King, D. W., & Drumright, D. G. (2010b). Chapter 10: Auditory physiology. In Anatomy & Physiology for speech, language, and hearing (4th ed., pp. 479–520). New York/Delmar: Cengage Learning.

    Google Scholar 

  • Shen, Y., Cheng, Y., Uyeda, T. Q., & Plaza, G. R. (2017). Cell mechanosensors and the possibilities of using magnetic nanoparticles to study them and to modify cell fate. Annals of Biomedical Engineering, 45(10), 2475–2486.

    Article  PubMed  Google Scholar 

  • Takechi, M., & Shigeru, K. (2010). History of studies on mammalian middle ear evolution: A comparative morphological and developmental biology perspective. Journal of Experimental Zoology (Molecular and Developmental Evolution), 314(6), 417–433.

    Article  Google Scholar 

  • Vazquez, A. E. (2016). α9α10 acetylcholine receptors: Structure and functions. Neurotransmitter, 3, e1298.

    Google Scholar 

  • Velluti, R. A. (2008). The auditory system in sleep. London: Elsevier.

    Google Scholar 

  • von Bekesy, G. (1948). On the elasticity of the cochlear partition. The Journal of the Acoustical Society of America, 20(3), 227–241.

    Google Scholar 

  • Wang, X., & Eliades, S. J. (2017). Contributions of sensory tuning to auditory-vocal interactions in marmoset auditory cortex. Hearing Research, 348, 98–111. https://doi.org/10.1016/j.heares.2017.03.001.

    Article  PubMed  Google Scholar 

  • Warchol, M. E. (2011). Sensory regeneration in the vertebrate inner ear: Differences at the levels of cells and species. Hearing Research, 273(1), 72–79.

    Article  PubMed  Google Scholar 

  • Wasserthal, C., Brechmann, A., Stadler, J., Fischl, B., & Engel, K. (2014). Localizing the human primary auditory cortex in vivo using structural MRI. Neuroimage, 93(Pt 2), 237–251. https://doi.org/10.1016/j.neuroimage.2013.07.046.

    Article  PubMed  Google Scholar 

  • Westoll, T. S. (1944). New light on the mammalian ear ossicles. Nature, 154(770), 293–330.

    Google Scholar 

  • Wolak, T., Lorens, A., CieÅ›la, K., Lewandowska, M., Kochanek, K., Wójcik, J., et al. (2017). Tonotopic organisation of the auditory cortex in sloping sensorineural hearing loss. Hearing Research, 355, 81–96. https://doi.org/10.1016/j.heares.2017.09.012.

    Article  PubMed  Google Scholar 

  • Woollacott, M. H. (1983). Effects of ethanol on postural adjustments in humans. Experimental Neurology, 80(1), 55–68.

    Article  PubMed  Google Scholar 

  • World Heritage Encyclopedia. (2017). Reichert–Gaupp theory. Retrieved November 6, 2017 from World Public Library Association: http://www.gutenberg.us/articles/reichert%E2%80%93gaupp_theory#Reichert.E2.80.93Gaupp_theory

  • Zheng, J., Madison, L. D., Oliver, D., Fakler, B., & Dallos, P. (2002). Prestin, the motor protein of outer hair cells. Audiology and Neurotology, 7(1), 9–12.

    Article  PubMed  Google Scholar 

  • Zheng, J., Shen, W., He, D. Z., Long, K. B., Madison, L. D., & Dallos, P. (2000). Prestin is the motor protein of cochlear outer hair cells. Nature, 405(6783), 149–155.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Khalil, M. (2018). Evolution of Hearing and Balance. In: Shackelford, T., Weekes-Shackelford, V. (eds) Encyclopedia of Evolutionary Psychological Science. Springer, Cham. https://doi.org/10.1007/978-3-319-16999-6_981-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16999-6_981-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16999-6

  • Online ISBN: 978-3-319-16999-6

  • eBook Packages: Springer Reference Behavioral Science and PsychologyReference Module Humanities and Social SciencesReference Module Business, Economics and Social Sciences

Publish with us

Policies and ethics