Skip to main content

Regulatory RNAs

Future Perspectives in Diagnosis, Prognosis, and Individualized Therapy

  • Protocol
Target Discovery and Validation Reviews and Protocols

Abstract

With potentially up to 1000 microRNAs (miRNAs) present in the human genome, altogether regulating the expression of thousands of genes, one can anticipate that miRNAs will play a significant role in health and disease. Deregulated protein expression induced by a dysfunctional miRNA-based regulatory system is thus expected to lead to the development of serious, if not lethal, genetic diseases. A relationship among miRNAs, Dicer, and cancer has recently been suggested. Further investigations will help establish specific causal links between dysfunctional miRNAs and diseases. miRNAs of foreign origin, e.g., viruses, may also be used as specific markers of viral infections. In these cases, miRNA expression profiles could represent a powerful diagnostic tool. Regulatory RNAs may also have therapeutic applications, by which disease-causing genes or viral miRNAs could be neutralized, or functional miRNAs be restored. Will bedside miRNA expression profiling eventually assist physicians in providing patients with accurate diagnosis, personalized therapy, and treatment outcome?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.

    Article  CAS  PubMed  Google Scholar 

  2. Elbashir, S. M., Lendeckel, W., and Tuschl, T. (2001) RNA interference is mediated by 21-and 22-nucleotide RNAs. Genes Dev. 15, 188–200.

    Article  CAS  PubMed  Google Scholar 

  3. Chiu, Y. L. and Rana, T. M. (2003) siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034–1048.

    Article  CAS  PubMed  Google Scholar 

  4. Lee, Y., Jeon, K., Lee, J. T., Kim, S., and Kim, V. N. (2002) MicroRNA maturation: stepwise processing and subcellular localization. Embo. J. 21, 4663–4670.

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., and Bradley, A. (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res. 14, 1902–1910.

    Article  CAS  PubMed  Google Scholar 

  6. Ying, S. Y. and Lin, S. L. (2005) Intronic microRNAs. Biochem. Biophys. Res. Commun. 326, 515–520.

    Article  CAS  PubMed  Google Scholar 

  7. Lee, Y., Kim, M., Han, J., et al. (2004) MicroRNA genes are transcribed by RNA polymerase II. Embo. J. 23, 4051–4060.

    Article  CAS  PubMed  Google Scholar 

  8. Cai, X., Hagedorn, C. H., and Cullen, B. R. (2004) Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, Y., Ahn, C., Han, J., et al. (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419.

    Article  CAS  PubMed  Google Scholar 

  10. Basyuk, E., Suavet, F., Doglio, A., Bordonne, R., and Bertrand, E. (2003) Human let-7 stem-loop precursors harbor features of RNase III cleavage products. Nucleic Acids Res. 31, 6593–6597.

    Article  CAS  PubMed  Google Scholar 

  11. Zeng, Y., Yi, R., and Cullen, B. R. (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. Embo. J. 24, 138–148.

    Article  CAS  PubMed  Google Scholar 

  12. Filippov, V., Solovyev, V., Filippova, M., and Gill, S. S. (2000) A novel type of RNase III family proteins in eukaryotes. Gene 245, 213–221.

    Article  CAS  PubMed  Google Scholar 

  13. Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F., and Hannon, G. J. (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432, 231–235.

    Article  CAS  PubMed  Google Scholar 

  14. Gregory, R. I., Yan, K. P., Amuthan, G., et al. (2004) The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240.

    Article  CAS  PubMed  Google Scholar 

  15. Han, J., Lee, Y., Yeom, K. H., Kim, Y. K., Jin, H., and Kim, V. N. (2004) The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027.

    Article  CAS  PubMed  Google Scholar 

  16. Landthaler, M., Yalcin, A., and Tuschl, T. (2004) The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162–2167.

    Article  CAS  PubMed  Google Scholar 

  17. Bohnsack, M. T., Czaplinski, K., and Gorlich, D. (2004) Exportin 5 is a RanGTPdependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191.

    Article  CAS  PubMed  Google Scholar 

  18. Brownawell, A. M. and Macara, I. G. (2002) Exportin-5, a novel karyopherin, mediates nuclear export of double-stranded RNA binding proteins. J. Cell. Biol. 156, 53–64.

    Article  CAS  PubMed  Google Scholar 

  19. Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E., and Kutay, U. (2004) Nuclear export of microRNA precursors. Science 303, 95–98.

    Article  CAS  PubMed  Google Scholar 

  20. Yi, R., Qin, Y., Macara, I. G., and Cullen, B. R. (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016.

    Article  CAS  PubMed  Google Scholar 

  21. Bernstein, E., Caudy, A. A., Hammond, S. M., and Hannon, G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  22. Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B., and Radmark, O. (2002) Ribonuclease activity and RNA binding of recombinant human Dicer. Embo. J. 21, 5864–5874.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, H., Kolb, F. A., Brondani, V., Billy, E., and Filipowicz, W. (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. Embo. J. 21, 5875–5885.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004) Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68.

    Article  CAS  PubMed  Google Scholar 

  25. Haase, A. D., Jaskiewicz, L., Zhang, H., et al. (2005) TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967.

    Article  CAS  PubMed  Google Scholar 

  26. Chendrimada, T. P., Gregory, R. I., Kumaraswamy, E., et al. (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744.

    Article  CAS  PubMed  Google Scholar 

  27. Bartel, D. P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  28. Hammond, S. M., Bernstein, E., Beach, D., and Hannon, G. J. (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293–296.

    Article  CAS  PubMed  Google Scholar 

  29. Gregory, R. I., Chendrimada, T. P., Cooch, N., and Shiekhattar, R. (2005) Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631–640.

    Article  CAS  PubMed  Google Scholar 

  30. Khvorova, A., Reynolds, A., and Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216.

    Article  CAS  PubMed  Google Scholar 

  31. Schwarz, D. S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P. D. (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208.

    Article  CAS  PubMed  Google Scholar 

  32. Liu, Q., Rand, T. A., Kalidas, S., Du, F., Kim, H. E., Smith, D. P., and Wang, X. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925.

    Article  CAS  PubMed  Google Scholar 

  33. Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., and Zamore, P. D. (2005) Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes. Cell 123, 607–620.

    Article  CAS  PubMed  Google Scholar 

  34. Mourelatos, Z., Dostie, J., Paushkin, S., et al. (2002) miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728.

    Article  CAS  PubMed  Google Scholar 

  35. Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R., and Hannon, G. J. (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146–1150.

    Article  CAS  PubMed  Google Scholar 

  36. Caudy, A. A., Ketting, R. F., Hammond, S. M., et al. (2003) A micrococcal nuclease homologue in RNAi effector complexes. Nature 425, 411–414.

    Article  CAS  PubMed  Google Scholar 

  37. Caudy, A. A., Myers, M., Hannon, G. J., and Hammond, S. M. (2002) Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491–2496.

    Article  CAS  PubMed  Google Scholar 

  38. Ishizuka, A., Siomi, M. C., and Siomi, H. (2002) A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Genes Dev. 16, 2497–2508.

    Article  CAS  PubMed  Google Scholar 

  39. Liu, J., Carmell, M. A., Rivas, F. V., et al. (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441.

    Article  CAS  PubMed  Google Scholar 

  40. Rand, T. A., Petersen, S., Du, F., and Wang, X. (2005) Argonaute2 cleaves the antiguide strand of siRNA during RISC activation. Cell 123, 621–629.

    Article  CAS  PubMed  Google Scholar 

  41. Rivas, F. V., Tolia, N. H., Song, J. J., et al. (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat. Struct. Mol. Biol. 12, 340–349.

    Article  CAS  PubMed  Google Scholar 

  42. Ma, J. B., Ye, K., and Patel, D. J. (2004) Structural basis for overhang-specific small interfering RNA recognition by the PAZ domain. Nature 429, 318–322.

    Article  CAS  PubMed  Google Scholar 

  43. Song, J. J., Liu, J., Tolia, N. H., et al. (2003) The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Biol. 10, 1026–1032.

    Article  CAS  PubMed  Google Scholar 

  44. Yan, K. S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M. M. (2003) Structure and conserved RNA binding of the PAZ domain. Nature 426, 468–474.

    Article  PubMed  Google Scholar 

  45. Ma, J. B., Yuan, Y. R., Meister, G., Pei, Y., Tuschl, T., and Patel, D. J. (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666–670.

    Article  CAS  PubMed  Google Scholar 

  46. Parker, J. S., Roe, S. M., and Barford, D. (2004) Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. Embo. J. 23, 4727–4737.

    Article  CAS  PubMed  Google Scholar 

  47. Song, J. J., Smith, S. K., Hannon, G. J., and Joshua-Tor, L. (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437.

    Article  CAS  PubMed  Google Scholar 

  48. Pillai, R. S., Artus, C. G., and Filipowicz, W. (2004) Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. RNA 10, 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  49. Pillai, R. S., Bhattacharyya, S. N., Artus, C. G., et al. (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309, 1573–1576.

    Article  CAS  PubMed  Google Scholar 

  50. Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197.

    Article  CAS  PubMed  Google Scholar 

  51. Griffiths-Jones, S. (2004) The microRNA registry. Nucleic Acids Res, 32, D109–D111.

    Article  CAS  PubMed  Google Scholar 

  52. Lewis, B. P., Burge, C. B., and Bartel, D. P. (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  53. Xie, X., Lu, J., Kulbokas, E. J., et al. (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345.

    Article  CAS  PubMed  Google Scholar 

  54. Vella, M. C., Reinert, K., and Slack, F. J. (2004) Architecture of a validated microRNA:target interaction. Chem. Biol. 11, 1619–1623.

    Article  CAS  PubMed  Google Scholar 

  55. Lim, L. P., Lau, N. C., Garrett-Engele, P., et al. (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773.

    Article  CAS  PubMed  Google Scholar 

  56. John, B., Enright, A. J., Aravin, A., Tuschl, T., Sander, C., and Marks, D. S. (2004) Human microRNA targets. PLoS Biol. 2, e363.

    Article  PubMed  Google Scholar 

  57. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003) Prediction of mammalian microRNA targets. Cell 115, 787–798.

    Article  CAS  PubMed  Google Scholar 

  58. Kiriakidou, M., Nelson, P. T., Kouranov, A., et al. (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev. 18, 1165–1178.

    Article  CAS  PubMed  Google Scholar 

  59. Shahi, P., Loukianiouk, S., Bohne-Lang, A., et al. (2006) Argonaute—a database for gene regulation by mammalian microRNAs. Nucleic Acids Res. 34, D115–D118.

    Article  CAS  PubMed  Google Scholar 

  60. Ouellet, D. L., Perron, M. P., Gobeil, L.-A., Plante, P., and Provost, P. (2006) MicroRNAs in gene regulation: when the smallest governs it all. J. Biomed. Biotech. (in press).

    Google Scholar 

  61. Calin, G. A., Sevignani, C., Dumitru, C. D., et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999–3004.

    Article  CAS  PubMed  Google Scholar 

  62. Chan, J. A., Krichevsky, A. M., and Kosik, K. S. (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65, 6029–6033.

    Article  CAS  PubMed  Google Scholar 

  63. Calin, G. A., Dumitru, C. D., Shimizu, M., et al. (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15,524–15,529.

    Article  CAS  PubMed  Google Scholar 

  64. Cimmino, A., Calin, G. A., Fabbri, M., et al. (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13,944–13,949.

    Article  CAS  PubMed  Google Scholar 

  65. Michael, M. Z., O’ Conner, S. M., van Holst Pellekaan, N. G., Young, G. P., and James, R.J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 1, 882–891.

    Google Scholar 

  66. Metzler, M., Wilda, M., Busch, K., Viehmann, S., and Borkhardt, A. (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39, 167–169.

    Article  CAS  PubMed  Google Scholar 

  67. Kluiver, J., Haralambieva, E., de Jong, D., et al. (2006) Lack of BIC and microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 45, 147–153.

    Article  CAS  PubMed  Google Scholar 

  68. He, L., Thomson, J. M., Hemann, M. T., et al. (2005) A microRNA polycistron as a potential human oncogene. Nature 435, 828–833.

    Article  CAS  PubMed  Google Scholar 

  69. Hayashita, Y., Osada, H., Tatematsu, Y., et al. (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 65, 9628–9632.

    Article  CAS  PubMed  Google Scholar 

  70. Takamizawa, J., Konishi, H., Yanagisawa, K., et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753–3756.

    Article  CAS  PubMed  Google Scholar 

  71. Johnson, S. M., Grosshans, H., Shingara, J., et al. (2005) RAS is regulated by the let-7 microRNA family. Cell 120, 635–647.

    Article  CAS  PubMed  Google Scholar 

  72. Karube, Y., Tanaka, H., Osada, H., et al. (2005) Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci. 96, 111–115.

    Article  CAS  PubMed  Google Scholar 

  73. Lu, J., Getz, G., Miska, E. A., et al. (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834–838.

    Article  CAS  PubMed  Google Scholar 

  74. Jiang, J., Lee, E. J., Gusev, Y., and Schmittgen, T. D. (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res. 33, 5394–5403.

    Article  CAS  PubMed  Google Scholar 

  75. Lecellier, C. H., Dunoyer, P., Arar, K., et al. (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308, 557–560.

    Article  CAS  PubMed  Google Scholar 

  76. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., and Sarnow, P. (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309, 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  77. Hariharan, M., Scaria, V., Pillai, B., and Brahmachari, S. K. (2005) Targets for human encoded microRNAs in HIV genes. Biochem. Biophys. Res. Commun. 337, 1214–1218.

    Article  CAS  PubMed  Google Scholar 

  78. Cheng, A. M., Byrom, M. W., Shelton, J., and Ford, L. P. (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290–1297.

    Article  CAS  PubMed  Google Scholar 

  79. Sullivan, C. S., Grundhoff, A. T., Tevethia, S., Pipas, J. M., and Ganem, D. (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435, 682–686.

    Article  CAS  PubMed  Google Scholar 

  80. Pfeffer, S., Zavolan, M., Grasser, F. A., et al. (2004) Identification of virus-encoded microRNAs. Science 304, 734–736.

    Article  CAS  PubMed  Google Scholar 

  81. Samols, M. A., Hu, J., Skalsky, R. L., and Renne, R. (2005) Cloning and identification of a microRNA cluster within the latency-associated region of Kaposi’s sarcoma-associated herpesvirus. J. Virol. 79, 9301–9305.

    Article  CAS  PubMed  Google Scholar 

  82. Lu, P. Y., Xie, F., and Woodle, M. C. (2005) In vivo application of RNA interference: from functional genomics to therapeutics. Adv. Genet. 54, 117–142.

    CAS  PubMed  Google Scholar 

  83. Valoczi, A., Hornyik, C., Varga, N., Burgyan, J., Kauppinen, S., and Havelda, Z. (2004) Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32, e175.

    Article  PubMed  Google Scholar 

  84. Ramkissoon, S. H., Mainwaring, L. A., Sloand, E. M., Young, N. S., and Kajigaya, S. (2005) Nonisotopic detection of microRNA using digoxigenin labeled RNA probes. Mol. Cell Probes 20, 1–4.

    Article  Google Scholar 

  85. Kloosterman, W. P., Wienholds, E., de Bruijn, E., Kauppinen, S., and Plasterk, R. H. (2006) In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29.

    Article  CAS  PubMed  Google Scholar 

  86. Hartig, J. S., Grune, I., Najafi-Shoushtari, S. H., and Famulok, M. (2004) Sequence-specific detection of MicroRNAs by signal-amplifying ribozymes. J. Am. Chem. Soc. 126, 722–723.

    Article  CAS  PubMed  Google Scholar 

  87. Raymond, C. K., Roberts, B. S., Garrett-Engele, P., Lim, L. P., and Johnson, J. M. (2005) Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA 11, 1737–1744.

    Article  CAS  PubMed  Google Scholar 

  88. Neely, L. A., Patel, S., Garver, J., et al. (2006) A single-molecule method for the quantitation of microRNA gene expression. Nat. Methods 3, 41–46.

    Article  CAS  PubMed  Google Scholar 

  89. Allawi, H. T., Dahlberg, J. E., Olson, S., et al. (2004) Quantitation of microRNAs using a modified Invader assay. RNA 10, 1153–1161.

    Article  CAS  PubMed  Google Scholar 

  90. Nelson, P. T., Baldwin, D. A., Scearce, L. M., Oberholtzer, J. C., Tobias, J. W., and Mourelatos, Z. (2004) Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 1, 155–161.

    Article  CAS  PubMed  Google Scholar 

  91. Liang, R. Q., Li, W., Li, Y., et al. (2005) An oligonucleotide microarray for microRNA expression analysis based on labeling RNA with quantum dot and nanogold probe. Nucleic Acids Res. 33, e17.

    Article  PubMed  Google Scholar 

  92. Babak, T., Zhang, W., Morris, Q., Blencowe, B. J., and Hughes, T. R. (2004) Probing microRNAs with microarrays: tissue specificity and functional inference. RNA 10, 1813–1819.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Perron, M.P., Boissonneault, V., Gobeil, LA., Ouellet, D.L., Provost, P. (2007). Regulatory RNAs. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 361. Humana Press. https://doi.org/10.1385/1-59745-208-4:311

Download citation

  • DOI: https://doi.org/10.1385/1-59745-208-4:311

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-890-4

  • Online ISBN: 978-1-59745-208-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics