Skip to main content

Validation of Telomerase and Survivin as Anticancer Therapeutic Targets Using Ribozymes and Small-Interfering RNAs

  • Protocol
Target Discovery and Validation Reviews and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 361))

  • 1252 Accesses

Abstract

In recent years expanding knowledge about basic biology and a detailed understanding of the molecular pathways involved in tumor cell growth and progression have allowed the identification of numerous genes as potential therapeutic targets. Studies in which the expression of these genes was manipulated by antisense strategies have provided clues as to how we can intervene to specifically kill tumor cells or sensitize them to conventional chemical and physical antitumor therapies. Such tumor specificity can only be obtained by exploiting a basic difference between normal and malignant cells. In this context, targeting cytoprotective factors such as telomerase and survivin is particularly attractive because of their almost selective expression in tumor cells and their proven association with disease progression. This chapter summarizes the results obtained with ribozymes and small-interfering RNAs in the functional validation of these two targets in cell cultures and animal tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jansen, B. and Zangemeister-Wittke, U. (2002) Antisense therapy for cancer—the time of truth. Lancet Oncol. 3, 672–683.

    Article  CAS  PubMed  Google Scholar 

  2. Kyo, S. and Inoue, M. (2002) Complex regulatory mechanisms of telomerase activity in normal and cancer cells: how can we apply them for cancer therapy? Oncogene 21, 688–697.

    Article  CAS  PubMed  Google Scholar 

  3. Altieri, D. C. (2003) Survivin and apoptosis control. Adv. Cancer Res. 88, 31–52.

    Article  CAS  PubMed  Google Scholar 

  4. Hahn, W. C. (2003) Role of telomeres and telomerase in the pathogenesis of human cancer. J. Clin. Oncol. 21, 2034–2043.

    Article  CAS  PubMed  Google Scholar 

  5. Smogorzewska, A. and de Lange, T. (2004) Regulation of telomerase by telomeric proteins. Annu. Rev. Biochem. 73, 177–208.

    Article  CAS  PubMed  Google Scholar 

  6. Karlseder, J. (2003) Telomere repeat binding factor: keeping the ends in check. Cancer Lett. 194, 189–197.

    Article  CAS  PubMed  Google Scholar 

  7. Wright, W. E. and Shay, J. W. (2005) Telomere-binding factors and general DNA repair. Nat. Genet. 37, 116–118.

    Article  CAS  PubMed  Google Scholar 

  8. Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A., and de Lange, T. (2002) DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 and G2. Curr. Biol. 12, 1635–1644.

    Article  CAS  PubMed  Google Scholar 

  9. Baumann, P. and Cech, T. R. (2001) Pot1, the putative telomere end-binding protein in fission yeast and humans. Science 292, 1171–1175.

    Article  CAS  PubMed  Google Scholar 

  10. Lundblad, V. (2003) Telomeres: taking the measure. Nature 423, 926–927.

    Article  CAS  PubMed  Google Scholar 

  11. Colgin, L. M., Baran, K., Baumann, P., Cech, T. R., and Reddel, R. R. (2003) Human POT1 facilitates telomere elongation by telomerase. Curr. Biol. 13, 942–946.

    Article  CAS  PubMed  Google Scholar 

  12. Keith, W. N., Evans, T. R. J., and Glasspool, R. M. (2001) Telomerase and cancer: time to move from a promising target to a clinical reality. J. Pathol. 195, 404–414.

    Article  CAS  PubMed  Google Scholar 

  13. Olovnikov, A. M. (1973) A theory of marginotomy. The incomplete copy of template margin in enzymatic synthesis of polynucleotides and biological significance of the phenomenon. J. Theor. Biol. 41, 181–190.

    Article  CAS  PubMed  Google Scholar 

  14. Cong, Y. S., Wright, W. E., and Shay, J. W. (2002) Human telomerase and its regulation. Microbiol. Mol. Biol. Rev. 66, 407–425.

    Article  CAS  PubMed  Google Scholar 

  15. Harrington, L., Zhou, W., McPhail, T., et al. (1997) Human telomerase contains evolutionarily conserved catalytic and structural subunits. Genes Dev. 11, 3109–3115.

    Article  CAS  PubMed  Google Scholar 

  16. Feng, J., Funk, W. D., Wang, S. S., et al. (1995) The RNA component of human telomerase. Science 269, 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  17. Yi, X., White, D. M., Aisner, D. L., Baur, J. A., Wright, W. E., and Shay, J. W. (2000) An alternate splicing variant of the human telomerase catalytic subunit inhibits telomerase activity. Neoplasia 2, 433–440.

    Article  CAS  PubMed  Google Scholar 

  18. Blackburn, E. H. (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 579, 859–862.

    Article  CAS  PubMed  Google Scholar 

  19. Hahn, W. C. and Meyerson, M. (2001) Telomerase activation, cellular immortalization and cancer. Ann. Med. 2, 123–129.

    Article  Google Scholar 

  20. Shay, J. W. and Bacchetti, S. (1997) A survey of telomerase activity in human cancer. Eur. J. Cancer 33, 787–791.

    Article  CAS  PubMed  Google Scholar 

  21. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  CAS  PubMed  Google Scholar 

  22. Folini, M. and Zaffaroni, N. (2005) Targeting telomerase by antisense-based approaches: perspectives for new anti-cancer therapies. Curr. Pharm. Des. 11, 1105–1117.

    Article  CAS  PubMed  Google Scholar 

  23. Blackburn, E. H. (2000) Telomere states and cell fates. Nature 408, 53–56.

    Article  CAS  PubMed  Google Scholar 

  24. Sharma, G. G., Gupta, A., Wang, H., et al. (2003) hTERT associates with human telomeres and enhances genomic stability and DNA repair. Oncogene 22, 131–146.

    Article  CAS  PubMed  Google Scholar 

  25. Cao, Y., Li, H., Deb, S., and Liu, J. P. (2004) TERT regulates cell survival independent of telomerase enzymatic activity. Oncogene 21, 3130–3138.

    Article  Google Scholar 

  26. Kelland, L. R. (2005) Overcoming the immortality of tumor cells by telomere and telomerase based cancer therapeutics—current status and future prospects. Eur. J. Cancer 41, 971–979.

    Article  CAS  PubMed  Google Scholar 

  27. Altieri, D. (2004) Molecular circuits of apoptosis regulation and cell division control: the survivin paradigm. J. Cell. Biochem. 92, 656–663.

    Article  CAS  PubMed  Google Scholar 

  28. Ambrosini, G., Adida, C., Sirugo, A., and Altieri, D. C. (1998) Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting. J. Biol. Chem. 273, 11,177–11,182.

    Article  CAS  PubMed  Google Scholar 

  29. Ambrosini, G., Adida, C., and Altieri, D. C. (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat. Med. 3, 917–921.

    Article  CAS  PubMed  Google Scholar 

  30. LaCasse, E. C., Baird, S., Korneluk, R. G., and MacKenzie, A. E. (1998) The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene 17, 3247–3259.

    Article  PubMed  Google Scholar 

  31. Mahotka, C., Wenzel, M., Springer, E., Gabbert, H. E., and Gerharz, C. D. (1999) Survivin-ΔEx3 and survivin-2B: two novel splice variants of the apoptosis inhibitor survivin with different antiapoptotic properties. Cancer Res. 59, 6097–6102.

    CAS  PubMed  Google Scholar 

  32. Badran, A., Yoshida, A., Ishikawa, K., et al. (2004) Identification of a novel splice variant of the human anti-apoptopsis gene survivin Biochem. Biophys. Res. Commun. 314, 902–907.

    Article  CAS  PubMed  Google Scholar 

  33. Caldas, H., Honsey, L. E., and Altura, R. A. (2005) Survivin 2alpha: a novel Survivin splice variant expressed in human malignancies. Mol. Cancer 4, 11.

    Article  PubMed  CAS  Google Scholar 

  34. Caldas, H., Jiang, Y., Holloway, M. P., et al. (2005) Survivin splice variants regulate the balance between proliferation and cell death. Oncogene 24, 1994–2007.

    Article  CAS  PubMed  Google Scholar 

  35. Li, F. and Altieri, D. C. (1999) The cancer anti-apoptosis mouse survivin gene: characterization of locus and transcriptional requirements of basal and cell cycle-dependent expression. Cancer Res. 59, 3143–3151.

    CAS  PubMed  Google Scholar 

  36. O’Connor, D. S., Grossman, D., Plescia, J., et al. (2000) Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. 97, 13,103–13,107.

    Article  PubMed  Google Scholar 

  37. Fortugno, P., Wall, N. R., Giodini, A., et al. (2002) Survivin exists in immunochemically distinct subcellular pools and is involved in spindle microtubule function. J. Cell Sci. 115, 575–585.

    CAS  PubMed  Google Scholar 

  38. Uren, A. G., Wong, L., Pakusch, M., et al. (2000) Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr. Biol. 10, 1319–1328.

    Article  CAS  PubMed  Google Scholar 

  39. Li, F., Ackermann, E. J., Bennett, C. F., et al. (1999) Pleiotropic cell-division defects and apoptosis induced by interference with survivin function. Nat. Cell Biol. 1, 461–466.

    Article  CAS  PubMed  Google Scholar 

  40. Chen, J., Wu, W., Tahir, S. K., et al. (2000) Down-regulation of survivin by antisense oligonucleotides increases apoptosis, inhibits cytokinesis and anchorage-dependent growth. Neoplasia 2, 235–241.

    Article  CAS  PubMed  Google Scholar 

  41. Giodini, A., Kallio, M. J., Wall, N. R., et al. (2002) Regulation of microtubule stability and mitotic progression by survivin. Cancer Res. 62, 2462–2467.

    CAS  PubMed  Google Scholar 

  42. Kallio, M. J., Nieminen, M., and Eriksson, J. E. (2001) Human inhibitor of apoptosis protein (IAP) survivin participates in regulation of chromosome segregation and mitotic exit. FASEB 15, 2721–2723.

    CAS  Google Scholar 

  43. Carvalho, A., Carmena, M., Sambade, C., Earnshaw, W. C., and Wheatley, S. P. (2003) Survivin is required for stable checkpoint activation in taxol-treated HeLa cells. J. Cell. Sci. 116, 2987–2998.

    Article  CAS  PubMed  Google Scholar 

  44. Dohi, T., Beltrami, E., Wall, N. R., Plescia, J., and Altieri, D. C. (2004) Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis. J. Clin. Invest. 114, 1117–1127.

    CAS  PubMed  Google Scholar 

  45. Fortugno, P., Beltrami, E., Plescia, J., et al. (2003) Regulation of survivin function by Hsp90. Proc. Natl. Acad. Sci. USA 100, 13,791–13,796.

    Article  CAS  PubMed  Google Scholar 

  46. O’Connor, D. S., Grossman, D., Plescia, J., et al. (2000) Regulation of apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proc. Natl. Acad. Sci. 97, 13,103–13,107.

    Article  PubMed  Google Scholar 

  47. Song, Z., Yao, X., and Wu, M. (2003) Direct interaction between survivin and Smac/DIABLO is essential for the anti-apoptotic activity of survivin during taxolinduced apoptosis. J. Biol. Chem. 278, 23,130–23,140.

    Article  CAS  PubMed  Google Scholar 

  48. Shiozaki, E. N. and Shi, Y. (2004) Caspases, IAPs and Smac/DIABLO: mechanisms from structural biology. Trends Biochem. Sci. 29, 486–494.

    Article  CAS  PubMed  Google Scholar 

  49. Altieri, D. C. (2003) Survivin, versatile modulation of cell division and apoptosis in cancer. Oncogene 22, 8581–8589.

    Article  CAS  PubMed  Google Scholar 

  50. O’Connor, D. S., Schechner, J. S., Adida, C., et al. (2000) Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am. J. Pathol. 156, 393–398.

    Article  PubMed  Google Scholar 

  51. Velculescu, V. E., Madden, S. L., Zhang, L., et al. (1999) Analysis of human transcriptomes. Nat. Gen. 23, 387–388.

    Article  CAS  Google Scholar 

  52. Plantaz, D., Mohapatra, G., Matthay, K. K., Pellarin, M., Seeger, R. C., and Feuerstein, B. G. (1997) Gain of chromosome 17 is the most frequent abnormality detected in neuroblastoma by comparative genomic hybridization. Am. J. Pathol. 150, 81–89.

    CAS  PubMed  Google Scholar 

  53. Hattori, M., Sakamoto, H., Satoh, K., and Yamamoto, T. (2001) DNA demethylase is expressed in ovarian cancers and the expression correlates with demethylation of CpG sites in the promoter region of c-erbB-2 and survivin genes. Cancer Lett. 169, 155–164.

    Article  CAS  PubMed  Google Scholar 

  54. Mirza, A., McGuirk, M., Hockenberry, T. N., et al. (2002) Human survivin is negatively regulated by wild-type p53 and participates in p53-dependent apoptotic pathway. Oncogene 21, 2613–2622.

    Article  CAS  PubMed  Google Scholar 

  55. Li, F., Ambrosini, G., Chu, E. Y., et al. (1998) Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396, 580–584.

    Article  CAS  PubMed  Google Scholar 

  56. Zaffaroni, N., Pennati, M., Colella, G., et al. (2002) Expression of the antiapoptotic gene survivin correlates with taxol resistance in human ovarian cancer. Cell. Mol. Life Sci. 59, 1406–1412.

    Article  CAS  PubMed  Google Scholar 

  57. Asanuma, K., Moriai, R., Yajima, T., et al. (2000) Survivin as a radio-resistance factor in pancreatic cancer. Jap. J. Cancer Res. 91, 1204–1209.

    CAS  Google Scholar 

  58. Zhang, M., Latham, D. E., Delaney, M. A., and Chakravarti, A. (2005) Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene 24, 2474–2482.

    Article  CAS  PubMed  Google Scholar 

  59. Nicholson, D. W. (2000) From bench to clinic with apoptosis-based therapeutic agents. Nature 407, 810–816.

    Article  CAS  PubMed  Google Scholar 

  60. Fischer, U. and Schulze-Osthoff, K. (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol. Rev. 57, 187–215.

    Article  CAS  PubMed  Google Scholar 

  61. Altieri, D. C. (2003) Validating survivin as a cancer therapeutic target. Nat. Rev. Cancer 3, 46–54.

    Article  CAS  PubMed  Google Scholar 

  62. Puerta-Fernandez, E., Romer-Lopez, C., Barroso-delJesus, A., and Berzal-Herranz, A. (2003) Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol. Rev. 27, 75–97.

    Article  CAS  PubMed  Google Scholar 

  63. Kore, A. R., Vaish, N. K., Kutzke, U., and Eckstein, F. (1998) Sequence specificity of the hammerhead ribozyme revisited: the NHH rule. Nucleic Acids Res. 26, 4116–4120.

    Article  CAS  PubMed  Google Scholar 

  64. Kurreck, J. (2003) Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644.

    Article  CAS  PubMed  Google Scholar 

  65. Kanazawa, Y., Ohkawa, K., Ueda, K., et al. (1996) Hammerhead ribozyme-mediated inhibition of telomerase activity in extracts of human hepatocellular carcinoma cells. Biochem. Biophys. Res Commun. 225, 570–576.

    Article  CAS  PubMed  Google Scholar 

  66. Wan, M. S., Fell, P. L., and Akhtar, S. (1998) Synthetic 2′-O-methyl-modified hammerhead ribozymes targeted to the RNA component of telomerase as sequence-specific inhibitors of telomerase activity. Antisense Nucleic Acid Drug Dev. 8, 309–317.

    CAS  PubMed  Google Scholar 

  67. Folini, M., Colella, G., Villa, R., Lualdi, S., Daidone, M. G., and Zaffaroni, N. (2000) Inhibition of telomerase activity by a hammerhead ribozyme targeting the RNA component of telomerase in human melanoma cells. J. Invest. Dermatol. 114, 259–267.

    Article  CAS  PubMed  Google Scholar 

  68. Yokoyama, Y., Takahashi, Y., Shinohara, A., et al. (1998) Attenuation of telomerase activity by a hammerhead ribozyme targeting the template region of telomerase RNA in endometrial carcinoma cells. Cancer Res. 58, 5406–5410.

    CAS  PubMed  Google Scholar 

  69. Yokoyama, Y., Wan, X., Takahashi, Y., Shinohara, A., Liulin, T., and Tamaya, T. (2002) Divalent hammerhead ribozyme targeting template region of human telomerase RNA has potent cleavage activity, but less inhibitory activity on telomerase. Arch. Biochem. Biophys. 405, 32–37.

    Article  CAS  PubMed  Google Scholar 

  70. Yeo, M., Rha, S. Y., Jeung, H. C., et al. (2005) Attenuation of telomerase activity by hammerhead ribozyme targeting human telomerase RNA induces growth retardation and apoptosis in human breast tumor cells. Int. J. Cancer 114, 484–489.

    Article  CAS  PubMed  Google Scholar 

  71. Yokoyama, Y., Takahashi, Y., Shinohara, A., et al. (2000) The 5′-end of hTERT mRNA is a good target for hammerhead ribozyme to suppress telomerase activity. Biochem. Biophys. Res Commun. 273, 316–321.

    Article  CAS  PubMed  Google Scholar 

  72. Ludwig, A., Saretzki, G., Holm, P. S., et al. (2001) Ribozyme cleavage of telomerase mRNA sensitizes breast epithelial cells to inhibitors of topoisomerase. Cancer Res. 61, 3053–3061.

    CAS  PubMed  Google Scholar 

  73. Saretzki, G., Ludwig, A., von Zglinicki, T., and Runnebaum, I. B. (2001) Ribozyme-mediated telomerase inhibition induces immediate cell loss but not telomere shortening in ovarian cancer cells. Cancer Gene Ther. 8, 827–834.

    Article  CAS  PubMed  Google Scholar 

  74. Pennati, M., Colella, G., Folini, M., Citti, L., Daidone, M. G., and Zaffaroni, N. (2002) Ribozyme-mediated attenuation of survivin expression sensitizes human melanoma cells to cisplatin-induced apoptosis. J. Clin. Invest. 109, 285–286.

    CAS  PubMed  Google Scholar 

  75. Pennati, M., Binda, M., De Cesare, M., et al. (2004) Ribozyme-mediated down-regulation of survivin expression sensitizes human melanoma cells to topotecan in vitro and in vivo. Carcinogenesis 25, 1129–1136.

    Article  CAS  PubMed  Google Scholar 

  76. Pennati, M., Binda, M., Coltella, G., et al. (2003) Radiosensitization of human melanoma cells by ribozyme-mediated inhibition of survivin expression. J. Invest. Dermatol. 120, 648–654.

    Article  CAS  PubMed  Google Scholar 

  77. Pennati, M., Binda, M., Coltella, G., et al. (2004) Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene 23, 386–394.

    Article  CAS  PubMed  Google Scholar 

  78. Choi, K. S., Lee, T. H., and Jung, M. H. (2003) Ribozyme-mediated cleavage of the human survivin mRNA and inhibition of antiapoptotic function of survivin in MCF-7 cells. Cancer Gene Ther. 10, 87–95.

    Article  CAS  PubMed  Google Scholar 

  79. Elbashir, S. M., Harborth, J., Weber, K., and Tuschl, T. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods 26, 199–213.

    Article  CAS  PubMed  Google Scholar 

  80. Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003) Killing the messenger: short RNAs that silence gene expression. Nat. Rev. Mol. Cell. Biol. 4, 457–467.

    Article  CAS  PubMed  Google Scholar 

  81. Izquierdo, M. (2005) Short interfering RNAs as a tool for cancer gene therapy. Cancer Gene Ther. 12, 217–227.

    Article  CAS  PubMed  Google Scholar 

  82. Kosciolek, B. A., Kalantidis, K., Tabler, M., and Rowley, P. T. (2003) Inhibition of telomerase activity in human cancer cells by RNA interference. Mol. Cancer Ther. 2, 209–216.

    Article  CAS  PubMed  Google Scholar 

  83. Li, S., Crothers, J., Haqq, C. M., and Blackburn, E. H. (2005) Cellular and gene expression responses involved in the rapid growth inhibition of human cancer cells by RNA interference-mediated depletion of telomerase RNA. J. Biol. Chem. 280, 23,709–23,717.

    Article  CAS  PubMed  Google Scholar 

  84. Kappler, M., Bache, M., Bartel, F., et al. (2004) Knockdown of survivin expression by small interfering RNA reduces the clonogenic survival of human sarcoma cell lines independently of p53. Cancer Gene Ther. 11, 186–193.

    Article  CAS  PubMed  Google Scholar 

  85. Kappler, M., Taubert, H., Bartel, F., et al. (2005) Radiosensitization, after a combined treatment of survivin siRNA and irradiation, is correlated with the activation of caspases 3 and 7 in a wt-p53 sarcoma cell line, but not in a mt-p53 sarcoma cell line. Oncol. Rep. 13, 167–172.

    CAS  PubMed  Google Scholar 

  86. Chawla-Sarkar, M., Bae, S. I., Reu, F. J., Jacobs, B. S., Lindner, D. J., and Borden, E. C. (2004) Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ. 11, 915–923.

    Article  CAS  PubMed  Google Scholar 

  87. Coma, S., Noe, V., Lavarino, C., et al. (2004) Use of siRNAs and antisense oligonucleotides against survivin RNA to inhibit steps leading to tumor angiogenesis. Oligonucleotides 14, 100–113.

    Article  CAS  PubMed  Google Scholar 

  88. Coumoul, X., Li, W., Wang, R. H., and Deng, C. (2004) Inducible suppression of Fgfr2 and Survivin in ES cells using a combination of the RNA interference (RNAi) and the Cre-LoxP system. Nucleic Acids Res. 32, e85.

    Article  PubMed  CAS  Google Scholar 

  89. Scherer, L. J. and Rossi, J. J. (2003) Approaches for the sequence-specific knockdown of mRNA. Nature Biotechnol. 21, 1457–1465.

    Article  CAS  Google Scholar 

  90. Caplen, N. J. (2004) Gene therapy progress and prospects. Downregulating gene expression: the impact of RNA interference. Gene Ther. 11, 1241–1248.

    Article  CAS  PubMed  Google Scholar 

  91. Schubert, S., Grünweller, A., Erdmann, V. A., and Kurreck, J. (2005) Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol. 348, 883–893.

    Article  CAS  PubMed  Google Scholar 

  92. Overhoff, M., Alken, M., Far, R. K., et al. (2005) Local RNA target structure influences siRNA efficacy: a systematic global analysis. J. Mol. Biol. 348, 871–881.

    Article  CAS  PubMed  Google Scholar 

  93. Lee, N. S., Lee, N. S., Bertrand, E., and Rossi, J. (1999) mRNA localizasion signals can enhance the intracellular effectiveness of hammerhead ribozymes. RNA 5, 1200–1209.

    Article  CAS  PubMed  Google Scholar 

  94. Sullenger, B. A. and Gilboa, E. (2002) Emerging clinical application of RNA. Nature 418, 252–258.

    Article  CAS  PubMed  Google Scholar 

  95. Bantounas, I., Phylactou, L. A., and Uney, J. B. (2004) RNA interference and the use of small interfering RNA to study gene function in mammalian systems. J. Mol. Endocrinol. 33, 545–557.

    Article  CAS  PubMed  Google Scholar 

  96. Sledz, C. A. and Williams, B. R. G. (2004) RNA interference and double-stranded-RNA-activated pathways. Biochem. Soc. Trans. 32, 952–956.

    Article  CAS  PubMed  Google Scholar 

  97. Sledz, C. A., Holko, M., de Veer, M. J., Silverman, R. H., and Williams, R. G. (2003) Activation of interferon system by short-interfering RNAs. Nat. Cell. Biol. 5, 834–839.

    Article  CAS  PubMed  Google Scholar 

  98. Huppi, K., Martin, S. E., and Caplen, N. J. (2005) Defining and assaying RNAi in mammalian cells. Mol. Cell. 17, 1–10.

    Article  CAS  PubMed  Google Scholar 

  99. Shay, J. W. and Wright, W. E. (2002) Telomerase: a target for cancer therapeutics. Cancer Cell 2, 257–265.

    Article  CAS  PubMed  Google Scholar 

  100. Folini, M., Brambilla, C., Villa, R., et al. (2005) Antisense oligonucleotide-mediated inhibition of hTERT, but not hTERC, induces rapid cell growth decline and apoptosis in the absence of telomere shortening in human prostate cancer cells. Eur. J. Cancer 41, 624–634.

    Article  CAS  PubMed  Google Scholar 

  101. Henson, J. D., Neumann, A. A., Yeager, T. R., and Reddel, R. R. (2002) Alternative lengthening of telomeres in mammalian cells. Oncogene 21, 598–610.

    Article  CAS  PubMed  Google Scholar 

  102. Reddel, R. R. and Bryan, T. M. (2003) Alternative lengthening of telomeres: dangerous road less travelled. Lancet 361, 1840.

    Article  PubMed  Google Scholar 

  103. Tran, J., Master, Z., Yu, J. L., Rak, J., Dumont, D. J., and Kerbel, R. S. (2002). A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc. Natl. Acad. Sci. USA 99, 4349–4354.

    Article  CAS  PubMed  Google Scholar 

  104. Mesri, M., Morales-Ruiz, M., Ackermann, E. J., et al. (2001) Suppression of vascular endothelial growth factor-mediated endothelial cell protection by survivin targeting. Am. J. Pathol. 158, 1757–1765.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Zaffaroni, N., Pennati, M., Folini, M. (2007). Validation of Telomerase and Survivin as Anticancer Therapeutic Targets Using Ribozymes and Small-Interfering RNAs. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 361. Humana Press. https://doi.org/10.1385/1-59745-208-4:239

Download citation

  • DOI: https://doi.org/10.1385/1-59745-208-4:239

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-890-4

  • Online ISBN: 978-1-59745-208-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics