Skip to main content

Antisense Oligonucleotides

Target Validation and Development of Systemically Delivered Therapeutic Nanoparticles

  • Protocol
Target Discovery and Validation Reviews and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 361))

Abstract

Antisense oligonucleotides (ASO) against specific molecular targets (e.g., Bcl-2 and Raf-1) are important reagents in cancer biology and therapy. Phosphorothioate modification of the ASO backbone has resulted in an increased stability of ASO in vivo without compromising, in general, their target selectivity. Although the power of antisense technology remains unsurpassed, dose-limiting side effects of modified ASO and inadequate penetration into the tumor tissue have necessitated further improvements in ASO chemistry and delivery systems. Oligonucleotide delivery systems may increase stability of the unmodified or minimally modified ASO in plasma, enhance uptake of ASO by tumor tissue, and offer an improved therapy response. Here, we provide an overview of ASO design and in vivo delivery systems, and focus on preclinical validation of a liposomal nanoparticle containing minimally modified raf antisense oligodeoxynucleotide (LErafAON). Intact rafAON (15-mer) is present in plasma and in normal and tumor tissues of athymic mice systemically treated with LErafAON. Raf-1 expression is decreased in normal and tumor tissues of LErafAON-treated mice. Therapeutic benefit of a combination of LErafAON and radiation or an anticancer drug exceeds radiation or drug alone against human prostate, breast, and pancreatic tumors grown in athymic mice. Further improvements in ASO chemistry and nanoparticles are promising avenues in antisense therapy of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zamecnik, P. C. and Stephenson, M. L. (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 75, 280–284.

    Article  CAS  PubMed  Google Scholar 

  2. Kasid, U., Pfeifer, A., Brennan, T., et al. (1989) Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science 243, 1354–1356.

    Article  CAS  PubMed  Google Scholar 

  3. Pirrollo, K. F., Rait, A., Sleer, L. S., and Chang, E. H. (2003) Antisense therapeutics: from theory to clinical practice. Pharmacol. Ther. 99, 55–77.

    Article  Google Scholar 

  4. Kurreck, J. (2003) Antisense technologies. Improvement through novel chemical modifications. Eur. J. Biochem. 270, 1628–1644.

    Article  CAS  PubMed  Google Scholar 

  5. Kasid, U. and Dritschilo, A. (2003) RAF antisense oligonucleotide as a tumor radiosensitizer. Oncogene 22, 5876–5884.

    Article  CAS  PubMed  Google Scholar 

  6. Agrawal, S. and Kandimalla, E. R. (2004) Antisense and siRNA as agonists of Toll-like receptors. Nat. Biotechnol. 22, 1533–1537.

    Article  CAS  PubMed  Google Scholar 

  7. Crooke, S. T. (2004) Progress in antisense technology. Annu. Rev. Med. 55, 61–95.

    Article  CAS  PubMed  Google Scholar 

  8. Gleave, M. E. and Monia, B. P. (2005) Antisense therapy for cancer. Nat. Rev. Cancer 5, 468–479.

    Article  CAS  PubMed  Google Scholar 

  9. Monia, B. P., Johnston, J. F., Geiger, T., Muller, M., and Fabbro, D. (1996) Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat. Med. 6, 668–675.

    Article  Google Scholar 

  10. Mullen, P., McPhillips, F., MacLeod, K., Monia, B., Smyth, J. F., and Langdon, S. P. (2004) Antisense oligonucleotide targeting of Raf-1: Importance of Raf-1 mRNA expression levels and Raf-1-dependent signaling in determining growth response in ovarian cancer. Clin. Cancer Res. 10, 2100–2108.

    Article  CAS  PubMed  Google Scholar 

  11. Williams, N. G. and Roberts, T. M. (1994) Signal transduction pathways involving the Raf proto-oncogene. Cancer Metastasis Rev. 13, 105–116.

    Article  CAS  PubMed  Google Scholar 

  12. Kasid, U., Suy, S., Dent, P., Ray, S., Whiteside, T. L., and Sturgill, T. W. (1996) Activation of Raf by ionizing radiation. Nature 382, 813–816.

    Article  CAS  PubMed  Google Scholar 

  13. Suy, S., Anderson, W. B., Dent, P., Chang, E., and Kasid, U. (1997) Association of Grb2 with Sos and Ras with Raf-1 upon gamma irradiation of breast cancer cells. Oncogene 15, 53–61.

    Article  CAS  PubMed  Google Scholar 

  14. Le Mellay, V., Houben, R., Troppmair, J., et al. (2002) Regulation of glycolysis by Raf protein serine/threonine kinases. Adv. Enzyme. Regul. 42, 317–332.

    Article  PubMed  Google Scholar 

  15. Patel, S., Wang, F.-H., Whiteside, T. L., and Kasid, U. (1997) Constitutive modulation of Raf-1 protein kinase is associated with differential gene expression of several known and unknown genes. Mol. Med. 3, 674–685.

    CAS  PubMed  Google Scholar 

  16. Kasid, U. (2001) Raf-1 protein kinase, signal transduction, and targeted intervention of radiation response. Exp. Biol. Med. 226, 624–625.

    CAS  Google Scholar 

  17. Kasid, U. and Suy, S. (1998) Stress-responsive signal transduction: emerging concepts and biological significance. In: Apoptosis Genes, (Potten, C. S., Booth, C., and Wilson, J., eds.), Kluwer Academic Publishers, Boston, MA, pp. 85–118.

    Google Scholar 

  18. Odabaei, G., Chatterjee, D., Jazirehi, A. R., Goodglick, L., Yeung, K., and Bonavida, B. (2004) Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. Adv. Cancer Res. 91, 169–200.

    Article  CAS  PubMed  Google Scholar 

  19. Hindley, A. and Kolch, W. (2002) Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J. Cell Sci. 115, 1575–1581.

    CAS  PubMed  Google Scholar 

  20. Rasouli-Nia, A., Liu, D., Perdue, S., and Britten, R. A. (1998) High Raf-1 kinase activity protects human tumor cells against paclitaxel-induced cytotoxicity. Clin. Cancer Res. 4, 1111–1116.

    CAS  PubMed  Google Scholar 

  21. Weinstein-Oppenheimer, C. R., Henriquez-Roldan, C. F., Davis, J. M., et al. (2001) Role of the Raf signal transduction cascade in the in vitro resistance to the anticancer drug doxorubicin. Clin. Cancer Res. 7, 2898–2907.

    CAS  PubMed  Google Scholar 

  22. Nimmanapalli, R., O’Bryan, E., Kuhn, D., Yamaguchi, H., Wang, H. G., and Bhalla, K. N. (2003) Regulation of 17-AAG-induced apoptosis: role of Bcl-2, Bcl-XL, and Bax downstream of 17-AAG-mediated down-regulation of Akt, Raf-1, and Src kinases. Blood 102, 269–275.

    Article  CAS  PubMed  Google Scholar 

  23. Pfeifer, A., Mark, G., Leung, S., Dougherty, M., Spillare, E., and Kasid, U. (1998) Effects of c-raf-1 and c-myc expression on radiation response in an in vitro model of human small-cell-lung-carcinoma. Biochem. Biophy. Res. Comm. 252, 481–486.

    Article  CAS  Google Scholar 

  24. Tang, W. Y., Chau, S. P., Tsang, W. P., Kong, S. K., and Kwok, T. T. (2004) The role of Raf-1 in radiation resistance of human hepatocellular carcinoma Hep G2 cells. Oncol. Rep. 12, 1349–1354.

    CAS  PubMed  Google Scholar 

  25. Pal, A., Ahmad, A., Khan, S., et al. (2005) Systemic delivery of RafsiRNA using cationic cardiolipin liposome silences Raf-1 expression and inhibits tumor growth in xenograft model of human prostate cancer. Int. J. Oncology. 26, 1087–1091.

    CAS  Google Scholar 

  26. Gokhale, P. C., Zhang, C., Newsome, J., et al. (2002) Pharmacokinetics, toxicity, and efficacy of ends-modified raf antisense oligodeoxyribonucleotide encapsulated in a novel cationic liposome (LErafAON). Clin. Cancer Res. 8, 3611–3621.

    CAS  PubMed  Google Scholar 

  27. Mewani, R. R., Tang, W., Rahman, A., et al. (2004) Enhanced therapeutic effects of doxorubicin and paclitaxel in combination with liposome-entrapped endsmodified raf antisense oligonucleotide against human prostate, lung and breast tumor models. Int. J. Onc. 24, 1181–1188.

    CAS  Google Scholar 

  28. Pei, J., Zhang, C., Gokhale, P. C., et al. (2004) Combination with liposomeentrapped, ends-modified raf antisense oligonucleotide (LErafAON) improves the anti-tumor efficacies of cisplatin, epirubicin, mitoxantrone, docetaxel, and gemcitabine. Anti-Cancer Drugs 15, 243–253.

    Article  CAS  PubMed  Google Scholar 

  29. Rudin, C. M., Marshall, J. L., Huang, C. H., et al. (2004) Delivery of a liposomal c-raf-1 antisense oligonucleotide by weekly bolus dosing in patients with advanced solid tumors: a phase I study. Clin. Cancer Res. 10, 7244–7251.

    Article  CAS  PubMed  Google Scholar 

  30. Soldatenkov, V. A., Dritschilo, A., Wang, F.-H., Olah, Z., Anderson, W. B., and Kasid, U. (1997) Inhibition of Raf-1 protein kinase by antisense phosphorothioate oligodeoxyribonucleotide is associated with sensitization of human laryngeal squamous carcinoma cells to gamma radiation. Can J. Sci. Am. 3, 13–20.

    CAS  Google Scholar 

  31. Dritschilo, A., Huang, C. H., Fleming, C., et al. (2003) Infusion of liposome-encapsulated c-raf antisense oligodeoxynucleotide (LErafAON) during radiation therapy in patients with advanced malignancies: a phase I study. Proceedings of the American Society of Clinical Oncology. 22, p. 224.

    Google Scholar 

  32. Lei, Y., Ahmad, A., Sheikh, S., Zhang, A., and Ahmad, I. (2004) Enhanced therapeutic efficacy of a novel liposome-based formulation of c-raf AON in combination with Taxol against human ovarian tumor model in SCID mice. Proc. Am. Assoc. Cancer Res. 45, 147.

    Google Scholar 

  33. Steinberg, J. L., Mendelson, D. S., Block, H., et al. (2005) Phase I study of LErafAON-ETU, an easy-to-use formulation of liposome entrapped c-raf antisense oligonucleotide, in advanced cancer patients. J. Clin. Oncol. 23(Suppl.), 244S.

    Google Scholar 

  34. Gokhale, P. C., Soldatenkov, V., Wang, F.-H., Rahman, A., Dritschilo, A., and Kasid, U. (1997) Antisense raf oligodeoxyribonucleotide is protected by liposomal encapsulation and inhibits Raf-1 protein expression in vitro and in vivo: implications for gene therapy of radioresistant cancer. Gene Therapy 4, 1289–1299.

    Article  CAS  PubMed  Google Scholar 

  35. Gleave, M., Tolcher, A., Miyake, H., et al. (1999) Progression to androgen independence is delayed by adjuvant treatment with antisense Bcl-2 oligodeoxynucleotides after castration in the LNCaP prostate tumor model. Clin. Cancer Res. 5, 2891–2898.

    CAS  PubMed  Google Scholar 

  36. Taylor, J. K., Zhang, Q. Q., Monia, B. P., Marcusson, E. G., and Dean, N. M. (1999) Inhibition of Bcl-XL expression sensitizes normal human keratinocytes and epithelial cells to apoptotic stimuli. Oncogene 18, 4495–4504.

    Article  CAS  PubMed  Google Scholar 

  37. Taylor, J. K., Zhang, Q. Q., Wyatt, J. R., and Dean, N. M. (1999) Induction of endogenous Bcl-xS through the control of Bcl-x pre-mRNA splicing by antisense oligonucleotides. Nat. Biotechnol. 17, 1097–1100.

    Article  CAS  PubMed  Google Scholar 

  38. Zangemeister-Wittke, U., Leech, S. H., Olie, R. A., et al. (2000) A novel bispecific antisense oligonucleotide inhibiting both bcl-2 and bcl-xL expression efficiently indues apoptosis in tumor cells. Clin. Cancer Res. 6, 2547–2555.

    CAS  PubMed  Google Scholar 

  39. Simões-Wüst, A. P., Hopkins-Donaldson, S., Sigrist, B., Belyanskaya, L., Stahel, R. A., and Zahgemeister-Wittke, U. (2004) A functionally improved locked nucleic acid antisense oligonucleotide inhibits Bcl-2 and Bcl-xL expression and facilitates tumor cell apoptosis. Oligonucleotides 14, 199–209.

    Article  PubMed  Google Scholar 

  40. Rapozzi, V., Burm, B. E. A., Cogoi, S., et al. (2002) Antiproliferative effect in chronic myeloid leukaemia cells by antisense peptide nucleic acids. Nucleic Acids Res. 30, 3712–3721.

    Article  CAS  PubMed  Google Scholar 

  41. Zellweger, T., Miyake, H., Cooper, S., et al. (2001) Antitumor activity of antisense clusterin oligonucleotides is improved in vitro and in vivo by incorporation of 2′-O-(2-methoxy)ethyl chemistry. J. Pharmacol. Exp. Ther. 298, 934–940.

    CAS  PubMed  Google Scholar 

  42. Park, Y. G., Nesterova, M., Agrawal, S., and Cho-Chung, Y. S. (1999) Dual blockade of cyclic AMP response element-(CRE) and AP-1-directed transcription by CRE-transcription factor decoy oligonucleotide. J. Biol. Chem. 274, 1573–1580.

    Article  CAS  PubMed  Google Scholar 

  43. Aharinejad, S., Paulus, P., Sioud, M., et al. (2004) Colony-stimulating factor-1 blockade by antisense oligonucleotides and small interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Cancer Res. 64, 5378–5384.

    Article  CAS  PubMed  Google Scholar 

  44. Rait, A. S., Pirollo, K. F., Rait, V., Krygier, J. E., Xiang, L., and Chang, E. H. (2001) Inhibitory effects of the combination of HER-2 antisense oligonucleotide and chemotherapeutic agents used for the treatment of human breast cancer. Cancer Gene Ther. 8, 728–739.

    Article  CAS  PubMed  Google Scholar 

  45. Shadidi, M. and Sioud, M. (2003) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FEBS J. 17, 256–258.

    CAS  Google Scholar 

  46. Thallinger, C., Wolschek, M. F., Maierhofer, H., et al. (2004) Mcl-1 is a novel therapeutic target for human sarcoma: Synergistic inhibition of human sarcoma xenotransplants by a combination of Mcl-1 antisense oligonucleotides with low-dose cyclophosphamide. Clin. Cancer Res. 10, 4185–4191.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang, Z., Wang, H., Prasad, G., et al. (2004) Radiosensitization by antisense anti-MDM2 mixed-backbone oligonucleotide in in vitro and in vivo human cancer models. Clin. Cancer Res. 10, 1263–1273.

    Article  CAS  PubMed  Google Scholar 

  48. Shiraishi, T. and Nielsen, P. E. (2004) Down-regulation of MDM2 and activation of p53 in human cancer cells by antisense 9-aminoacridine-PNA (peptide nucleic acid) conjugates. Nucleic Acids Res. 32, 4893–4902.

    Article  CAS  PubMed  Google Scholar 

  49. Zupi, G., Scarsella, M., Semple, S. C., Mottolese, M., Natali, P. G., and Leonetti, C. (2005) Antitumor efficacy of bcl-2 and c-myc antisense oligonucleotides in combination with cisplatin in human melanoma xenografts: relevance of the administration sequence. Clin. Cancer Res. 11, 1990–1998.

    Article  CAS  PubMed  Google Scholar 

  50. Cutrona, G., Carpaneto, E. M., Ponezanelli, A., et al. (2003) Inhibition of the translocated c-myc in Burkitt’s lymphoma by a PNA complementary to the Eμ enhancer. Cancer Res. 63, 6144–6148.

    CAS  PubMed  Google Scholar 

  51. Wang, H., Cai, Q., Zeng, X., Yu, D., Agrawall, S., and Zhang, R. (1999) Antitumor activity and pharmacokinetics of a mixed-backbone antisense oligonucleotide targeted to the RIα subunit of protein kinase A after oral administration. Proc. Natl. Acad. Sci. USA 96, 13,989–13,994.

    Article  CAS  PubMed  Google Scholar 

  52. Dean, N., Mckay, R., Miraglia, L., et al. (1996) Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-α expression. Cancer Res. 56, 3499–3507.

    CAS  PubMed  Google Scholar 

  53. Mologni, L., Marchesi, E., Nielsen, P. E., and Gambacorti-Passerini, C. (2001) Inhibition of promyelocytic leukemia (PML)/retinoic acid receptor-α and PML expression in acute promyelocytic leukemia cells by anti-PML peptide nucleic acid. Cancer Res. 61, 5468–5473.

    CAS  PubMed  Google Scholar 

  54. Tanami, H., Imoto, I., Hirasawa, A., et al. (2004) Involvement of overexpressed wild-type BRAF in the growth of malignant melanoma cell lines. Oncogene 23, 8796–8804.

    Article  CAS  PubMed  Google Scholar 

  55. Kasid, U., Olah, Z., Anderson, W., and Dritschilo, A. (1991) Inhibition of c-raf-1 protein kinase activity by antisense phosphorothioate oligonucleotides in human radiation resistant squamous carcinoma cells. Proceedings of the International Congress of Radiation Research, No. P16-03, p. 242.

    Google Scholar 

  56. Lee, Y., Vassilakos, A., Feng, N., et al. (2003) GTI-2040, and antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res. 63, 2802–2811.

    CAS  PubMed  Google Scholar 

  57. Elayadi, A. N., Demieville, A., Wancewicz, E. V., Monia, B. P., and Corey, D. R. (2001) Inhibition of telomerase by 2′-O-(2-methoxyethyl) RNA oligomers: effect of length, phosphorothioate substitution and time inside cells. Nucleic Acids Res. 29, 1683–1689.

    Article  CAS  PubMed  Google Scholar 

  58. McManus, D. C., Lefebvre, C. A., Cherton-Horvat, G., et al. (2004) Loss of XIAP protein expression by RNAi and antisense approaches sesitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23, 8105–8117.

    Article  CAS  PubMed  Google Scholar 

  59. Agrawal, S., Jiang, Z., Zhao, Q., et al. (1997) Mixed-backbone oligonucleotides as second generation antisense oligonucleotides: in vitro and in vivo studies. Proc. Natl. Acad. Sci. USA 94, 2620–2625.

    Article  CAS  PubMed  Google Scholar 

  60. Gokhale, P. C., McRae, D., Monia, B. P., et al. (1999) Antisense raf oligodeoxyribonucleotide is a radiosensitizer in vivo. Antisense Nucleic Acid Drug Dev. 9, 191–201.

    CAS  PubMed  Google Scholar 

  61. Johnson, J. L., Guo, W., Zang, J., et al. (2004) Quantification of raf antisense oligonucleotide (rafAON) in biological matrices by LC-MS/MS to support pharmacokinetics of a liposome-entrapped rafAON formulation. Biomed. Chromatogr. 19, 272–278.

    Article  Google Scholar 

  62. Rait, A. S., Pirollo, K. F., Xiang, L., Ulick, D., and Chang, E. H. (2002) Tumor-targeting, systemically delivered antisense HER-2 chemosensitizes human breast cancer xenografts irrespective of HER-2 levels. Mol. Med. 8, 475–486.

    CAS  PubMed  Google Scholar 

  63. Xu, L., Huang, C. C., Huang, W., et al. (2002) Systemic tumor-targeted gene delivery by anti-transferrin receptor scFv-immunoliposomes. Mol. Cancer Ther. 1, 337–346.

    Article  CAS  PubMed  Google Scholar 

  64. Pastorino, F., Brignole, C., Marimpietri, D., et al. (2003) Targeted liposomal c-myc antisense oligodeoxynucleotides induce apoptosis and inhibit tumor growth and metastases in human melanoma models. Clin. Cancer Res. 9, 4595–4605.

    CAS  PubMed  Google Scholar 

  65. Brignole, C., Pastorino, F., Marimpietri, D., et al. (2004) Immune cell-mediated antitumor activities of GD2-targeted liposomal c-myb antisense oligonucleotides containing CpG motifs. J. Natl. Cancer Inst. 96, 1171–1180.

    Article  CAS  PubMed  Google Scholar 

  66. Schwab, G., Chavany, C., Duroux, I., et al. (1994) Antisense oligonucleotides adsorbed to polyalkylcyanoacrylate nanoparticles specifically inhibit mutated Ha-ras-mediated cell proliferation and tumorigenicity in nude mice. Proc. Natl. Acad. Sci. USA 91, 10,460–10,464.

    Article  CAS  PubMed  Google Scholar 

  67. Lamber, G., Bertrand, J. R., and Fattal, E. (2000) EWS Fli-1 antisense nanocapsules inhibits ewing sarcoma-related tumor in mice. Biochem. Biophys. Res. Commun. 279, 401–406.

    Article  Google Scholar 

  68. Leonetti, C., Biroccio, A., Benassi, B., et al. (2001) Encapsulation of c-myc antisense oligodeoxynucleotides in lipid particles improves antitumoral efficacy in vivo in a human melanoma line. Cancer Gene Ther. 8, 459–468.

    Article  CAS  PubMed  Google Scholar 

  69. Rudin, C. M., Kozloff, M., Hoffman, P. C., et al. (2004) Phase I study of G3139, a bcl-2 antisense oligonucleotide, combined with carboplatin and etoposide in patients with small-cell lung cancer. J. Clin. Oncol. 22, 1110–1117.

    Article  CAS  PubMed  Google Scholar 

  70. Marshall, J., Chen, H., Yang, D., et al. (2004) A phase I trial of a Bcl-2 antisense (G3139) and weekly docetaxel in patients with advanced breast cancer and other solid tumors. Ann. Oncol. 15, 1274–1283.

    Article  CAS  PubMed  Google Scholar 

  71. Marcucci, G., Stock, W., Dai, G., et al. (2005) Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: Pharmacokinetics, pharmacodynamics, and clinical activity. J. Clin. Oncol. 23, 3404–3411.

    Article  CAS  PubMed  Google Scholar 

  72. Badros, A. Z., Goloubeva, O., Rapoport, A. P., et al. (2005) Phase II study of G3139, a Bcl-2 antisense oligonucleotide, in combination with dexamethasone and thalidomide in relapsed multiple myeloma patients. J. Clin. Oncol. 23, 1–11.

    Article  Google Scholar 

  73. Tolcher, A. W., Chi, K., Kuhn, J., et al. (2005) A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 11, 3854–3861.

    Article  CAS  PubMed  Google Scholar 

  74. Jansen, B., Wacheck, V., Heere-Ress, E., et al. (2000) chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356, 1728–1733.

    Article  CAS  PubMed  Google Scholar 

  75. Chen, H. X., Marshall, J. L., Ness, E., et al. (2000) A safety and pharmacokinetic study of a mixed-backbone oligonucleotide (GEM231) targeting the type I protein kinase A by two-hour infusions in patients with refractory solid tumors. Clin. Cancer Res. 6, 1259–1266.

    CAS  PubMed  Google Scholar 

  76. Goel, S., Desai, K., Bulgaru, A., et al. (2003) A safety study of a mixed-backbone oligonucleotide (GEM231) targeting the type I regulatory subunit α of protein kinase A using a continuous infusion shedule in patients with refractory solid tumors. Clin. Cancer Res. 9, 4069–4076.

    CAS  PubMed  Google Scholar 

  77. Mani, S., Goel, S., Nesterova, M., et al. (2003) Clinical studies in patients with solid tumors using a second-generation antisense oligonucleotide (GEM231) targeted against protein kinase A type I. Ann. N.Y. Acad. Sci. 1002, 252–262.

    Article  CAS  PubMed  Google Scholar 

  78. Marshall, J. L., Eisenberg, S. G., Johnson, M. D., et al. (2004) A phase II trial of ISIS 3521 in patients with metastatic colorectal cancer. Clin. Colorectal Cancer 4, 268–274.

    Article  CAS  PubMed  Google Scholar 

  79. Mani, S., Rudin, C. M., Kunkel, K., et al. (2002) Phase I clinical and pharmacokinetic study of protein kinase C-α antisense oligonucleotide ISIS 3521 administered in combination with 5-fluorouracil and leucovorin in patients with advanced cancer. Clin. Cancer Res. 8, 1042–1048.

    CAS  PubMed  Google Scholar 

  80. Rao, S., Watkins, D., Cunningham, D., et al. (2004) Phase II study of ISIS 3521, an antisense oligodeoxynucleotide to protein kinase C alpha, in patients with previously treated low-grade non-Hodgkin’s lymphoma. Ann. Oncol. 15, 1413–1418.

    Article  CAS  PubMed  Google Scholar 

  81. Stevenson, J. P., Yao, K. S., Gallagher, M., et al. (1999) Phase I clinical/pharmacokinetic and pharmacodynamic trial of the c-raf-1 antisense oligonucleotide ISIS 5132 (CGP 69846A). J. Clin. Oncol. 17, 2227–2236.

    CAS  PubMed  Google Scholar 

  82. Rudin, C. M., Holmlund, J., Fleming, G. F., et al. (2001) Phase I Trial of ISIS 5132, an antisense oligonucleotide inhibitor of c-raf-1, administered by 24-hour weekly infusion to patients with advanced cancer. Clin. Cancer Res. 7, 1214–1220.

    CAS  PubMed  Google Scholar 

  83. Desai, A. A., Schilsky, R. L., Young, A., et al. (2005) A phase I study of antisense oligonucleotide GTI-2040 given by continuous intravenous infusion in patients with advanced solid tumors. Ann. Oncol. 16, 958–965.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Zhang, C. et al. (2007). Antisense Oligonucleotides. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 361. Humana Press. https://doi.org/10.1385/1-59745-208-4:163

Download citation

  • DOI: https://doi.org/10.1385/1-59745-208-4:163

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-890-4

  • Online ISBN: 978-1-59745-208-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics