Skip to main content

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 361))

Abstract

In normal cells, signaling pathways are tightly regulated. However, when they are aberrantly activated, certain pathways are capable of causing diseases. In many tumors, the aberrantly activated signaling proteins include members of the epidermal growth factor receptor family, the Ras proteins, protein kinase C isoenzymes, BCR-ABL fusion protein as well as transcription factors such as signal transducers and activators of transcriptions and Myc. Accordingly, deregulation of these signaling proteins holds promise for the development of new anticancer drugs. Studies in vitro and in disease-relevant models demonstrated that blocking the activation of a key target in a constitutively activated signaling pathway could reverse disease phenotype. Moreover, constitutive activation of the target alone is sufficient to induce relevant disease phenotype. Notably, the most dramatic therapeutic advances in cancer therapy during the last decade have come from agents targeted against active thyrosine kinases. These include imatinib (anti-BCR-ABL), gefitinib (anti-EGF receptor), and herpetin (anti-ErbB-2). Here, some selected validated and drugable targets are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shawver, L. K., Slamon, D., and Ullrich, A. (2002) Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1, 117–123.

    Article  CAS  PubMed  Google Scholar 

  2. Levitzki, A. (1994) Signal-transduction therapy. Eur. J. Biochem. 226, 1–13.

    Article  CAS  PubMed  Google Scholar 

  3. Dhanasekaran, N. (1998) Cell signaling: an overview. Oncogene 17, 1329–1330.

    Article  CAS  PubMed  Google Scholar 

  4. Schlessinger, J. (2000) Cell signaling by receptor tyrosine kinases. Cell 103, 211–225.

    Article  CAS  PubMed  Google Scholar 

  5. Mendelsohn, J. and Baselga, J. (2000) The EGF receptor family as targets for cancer therapy. Oncogene 19, 6550–6565.

    Article  CAS  PubMed  Google Scholar 

  6. Campbell, L., Khosravi-Far, R., Rossmann, K. L., Clark, G. J., and Der, C. J. (1998) Increasing complexity of Ras signaling. Oncogene 17, 1395–1413.

    Article  CAS  PubMed  Google Scholar 

  7. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., and Sudarsanam, S. (2002) The protein kinase complement of the human genome. Science 298, 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  8. Roskoski, R. (2004) The ErbB/HER receptor protein-tyrosine kinases and cancer. Bioch. Biophys. Res. Commun. 319, 1–11.

    Article  CAS  Google Scholar 

  9. Bowman, T., Garcia, R., Turkson, R., and Jove, R. (2000) STATs in oncogenesis. Oncogene 19, 2474–2488.

    Article  CAS  PubMed  Google Scholar 

  10. Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W., and Darnell, J. E., Jr. (1998) Mol. Cell. Biol. 18, 2553–2558.

    CAS  PubMed  Google Scholar 

  11. Bromberg, J. F., Wrzeszczynska, M. H., Devgan, G., et al. (1999) Stat3 as an oncogene. Cell 98, 295–303.

    Article  CAS  PubMed  Google Scholar 

  12. Polakis, P. (2000) Wnt signalling and cancer. Genes Devel. 14, 1837–1851.

    CAS  PubMed  Google Scholar 

  13. Kinzler, K. W. and Vogelstein, B. (1996) Lessons from hereditary colorectal cancer. Cell 87, 159–170.

    Article  CAS  PubMed  Google Scholar 

  14. Dekker, L. V. and Parker, P. J. (1994) Protein kinase C—a question of specificity. TIBS 19, 73–77.

    CAS  PubMed  Google Scholar 

  15. Hug, H. and Sarre, T. F. (1993) Protein kinase C isoenzymes: divergence in signal transduction? Biochem. J. 291, 329–343.

    CAS  PubMed  Google Scholar 

  16. Tsujimoto, Y. and Shimizu, S. (2000) Bcl-2 family: life-or-death switch. FEBS Letters 466, 6–10.

    Article  CAS  PubMed  Google Scholar 

  17. Simonian, P. L., Grillot, D. A., and Nunez, G. (1997) Bcl-2 and Bcl-xL can differentially block chemotherapy-induced cell death. Blood 90, 1208–1216.

    CAS  PubMed  Google Scholar 

  18. Dole, M., Nunez, G., Merchant, A. K., et al. (1994) Bcl-2 inhibits chemotherapy-induced apoptosis in neuroblastoma. Cancer Res. 54, 3253–3259.

    CAS  PubMed  Google Scholar 

  19. Arteaga, C. L. (2001) The epidermal growth factor receptor: From mutant oncogene in nonhuman cancers to therapeutic target in human neoplasia. J. Clin. Oncol. 19, S32–S40.

    Google Scholar 

  20. Nicholson, R. I., Gee, J. M., and Harper, M. E. (2001) EGFR and cancer prognosis. Eur. J. Cancer 37, 9–15.

    Article  Google Scholar 

  21. Cooke, T., Reeves, J., Lannigan, A., and Stanton, P. (2001) The value of the human epidermal growth factor receptor-2 (Her-2) as a prognostic marker. Eur. J. Cancer. 37, 3–10.

    Article  PubMed  Google Scholar 

  22. Chakravarti, A. Dicker, A., and Mehta, M. (2004) The contribution of epidermal growth factor receptor (EGFR) signaling pathway to radioresistance in human gliomas: a review of preclinical and correlative clinical data. Int. J. Rad. Oncol. Biol. Phys. 58, 927–931.

    Article  CAS  Google Scholar 

  23. Wong, A. J., Ruppert, J. M., Bigner, S. H., et al. (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc. Natl. Acad. Sci. USA 89, 2965–2969.

    Article  CAS  PubMed  Google Scholar 

  24. Humphrey, P. A., Wong, A. J., Vogelstein, B., et al. (1990) Anti-synthetic peptide antibody reacting at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc. Natl. Acad. Sci. USA 87, 4207–4211.

    Article  CAS  PubMed  Google Scholar 

  25. Hung, M.-C. and Lau, Y.-K. (1999) Basic science of HER-2/neu: A Review. Semin. Oncol. 26, 51–59.

    CAS  PubMed  Google Scholar 

  26. Amundadottir, L. T. and Leder, P. (1998) Signal transduction pathways activated and required for mammary carcinogenesis in response to specific oncogenes. Oncogene 16, 737–746.

    Article  CAS  PubMed  Google Scholar 

  27. Vignot, S., Faivre, S., Aguirre, D., and Raymond, E. (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol. 16, 525–537.

    Article  CAS  PubMed  Google Scholar 

  28. Mass, R. D. (2004) The HER receptor family: a rich target for therapeutic development. Int. J. Rad. Oncol. Biol. Phys. 58, 932–940.

    Article  CAS  Google Scholar 

  29. Willems, A., Gauger, K., Henrichs, C., and Harbeck, N. (2005) Antibody therapy for breast cancer. Anticancer Res. 25, 1483–1489.

    CAS  PubMed  Google Scholar 

  30. Sebti, S. M. and Hamilton, A. D. (2000) Design of growth factor antagonists with antiangiogenic and antitumor properties. Oncogene 19, 6566–6573.

    Article  CAS  PubMed  Google Scholar 

  31. Deininger, M., Goldman, J., and Melo, J. (2000) The molecular biology of chronic myeloid leukaemia. Blood 96, 3343–3356.

    CAS  PubMed  Google Scholar 

  32. Bartram, C., de Klein, A., and Hagemeijer, A. (1983) Translocation of c-abl oncogene correlates with the presence of the Philadelphia chromosome in chronic myelocytic leukemia. Nature 306, 277–280.

    Article  CAS  PubMed  Google Scholar 

  33. Bos, J. L. (1989) Ras oncogenes in human cancer. Cancer Res. 49, 4682–4689.

    CAS  PubMed  Google Scholar 

  34. Adjei, A. A. (2001) Blocking oncogenic Ras signaling for cancer therapy. J. Natl. Cancer Inst. 93, 1062–1074.

    Article  CAS  PubMed  Google Scholar 

  35. Johnston, S. R. (2001) Farnesyltransferase inhibitors: a novel targeted therapy for cancer. Lancet Oncol. 2, 18–26.

    Article  CAS  PubMed  Google Scholar 

  36. De Bono, J. S. and Rowinsky, E. K. (2002) Therapeutics targeting signal transduction for patients with colorectal carcinoma. Br. Med. Bulletin. 64, 227–254.

    Article  Google Scholar 

  37. Cowsert, L. M. (1997) In vitro and in vivo activity of antisense inhibitors of ras: potential for clinical development. Anticancer Drug. Des. 12, 359–371.

    CAS  PubMed  Google Scholar 

  38. Monia, B. P., Ecker, D. J., Zounes, M. A., Lima, W. F., and Freier, S. M. (1992) Selective inhibition of mutant Ha-Ras mRNA expression by antisense oligonucleotides. J. Biol. Chem. 267, 19,954–19,962.

    CAS  PubMed  Google Scholar 

  39. Callans, L. S., Naama, H., Khandelwal, M., Plotkin, R., and Jardines, L. (1995) Raf-1 protein expression in human breast cancer cells. Ann. Surg. Oncol. 2, 38–42.

    Article  CAS  PubMed  Google Scholar 

  40. Sithanandam, G., Dean, M., Brennscheidt, U., et al. (1989) Loss of heterozygosity of the c-raf locus in small cell lung carcionoma. Oncogene 4, 451–455.

    CAS  PubMed  Google Scholar 

  41. Morrison, D. K. and Cutler, R. E. (1997) The complexity of Raf-1 regulation. Curr. Opin. Cell. Biol. 9, 174–179.

    Article  CAS  PubMed  Google Scholar 

  42. Marquardt, B., Frith, D., and Stabel, S. (1994) Signalling from TPA to MAP kinase requires protein kinase C, raf and MEK: reconstitution of the signalling pathway in vitro. Oncogene 9, 3213–3218.

    CAS  PubMed  Google Scholar 

  43. Lyons, J. F., Wilhelm, S., Hibner, B., and Bollag, G. (2001) Discovery of a novel Raf kinase inhibitor. Endocr. Relat. Cancer 8, 219–225.

    Article  CAS  PubMed  Google Scholar 

  44. Iversen, P. O., Emanuel, P. D., and Sioud, M. (2002) Targeting Raf-1 gene expression by a DNA enzyme inhibits juvenile myelomonocytic leukemia cell growth. Blood 99, 4147–4153.

    Article  CAS  PubMed  Google Scholar 

  45. Monia, B. P., Johnston, J. F., Geiger, T., Muller, M., and Fabbro, D. (1996) Antitumor activity of phosphorothioate antisense oligodeoxynucleotide targeted against c-Raf kinase. Nat. Med. 2, 668–675.

    Article  CAS  PubMed  Google Scholar 

  46. Sebolt-Leopold, J. S. (2000) Development of anticancer drugs targeting the MAP kinase pathway. Oncogene 19, 6594–6599.

    Article  CAS  PubMed  Google Scholar 

  47. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689.

    Article  CAS  PubMed  Google Scholar 

  48. Sebolt-Leopold, J. S., Dudley, D. T., Herrera, R., et al. (1999) Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med. 5, 810–816.

    Article  CAS  PubMed  Google Scholar 

  49. Schaeffer, H. J. and Weber, M. J. (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19, 2435–2444.

    CAS  PubMed  Google Scholar 

  50. Boulton, G., Nye, S. H., Robbibs, D. J., et al. (1991) ERKs: a family of protein-serine/threonine kinases that are activated and tyrosine phosphorylated in response to insulin. Cell 65, 663–675.

    Article  CAS  PubMed  Google Scholar 

  51. Plattner, R., Gupta, S., Khosravi-Far, R., et al. (1999) Differential contribution of the ERK and JNK mitogen-activated protein kinase cascades to ras transformation of HT1080 fibrosarcoma and DLD-1 colon carcinoma cells. Oncogene 18, 1807–1817.

    Article  CAS  PubMed  Google Scholar 

  52. Silvany, R. E., Eliazer, S., Wolff, N. C., and Ilaria, R. L., Jr. (2000) Interference with the constitutive activation of ERK1 and ERK2 impairs EWS/FLI-1-dependent transformation. Oncogene 19, 4523–4530.

    Article  CAS  PubMed  Google Scholar 

  53. Silvennoinen, O., Ihle, J. N., Schlessinger, J., and Levy, D. E. (1993) Interferon-induced nuclear signaling by Jak protein tyrosine kinases. Nature 366, 583–585.

    Article  CAS  PubMed  Google Scholar 

  54. O’Shea, J. J., Gadina, M., and Schreiber, R. D. (2002) Cytokine signaling in 2002: new surprises in the JAK/STAT pathway. Cell 109, S121–S131.

    Article  PubMed  Google Scholar 

  55. Schindler, C. W. (2002) JAK-STAT signaling in human disease. J. Clin. Invest. 109, 1133–1137.

    CAS  PubMed  Google Scholar 

  56. Chen, X., Bhandari, R., Vinkermeier, U., Van Den Akker, F., Darnell, J. E., Jr., and Kuriyan, J. (2003) A reinterpretation of the dimerization interface of the N-terminal domains of STATs. Protein Sci. 12, 361–365.

    Article  CAS  PubMed  Google Scholar 

  57. Luo, C. and Laaja, P. (2004) Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. DDT 9, 268–275.

    CAS  PubMed  Google Scholar 

  58. Bromberg, J. F., Horvath, C. M., Besser, D., Lathem, W. W., and Darnell, J. E., Jr. (1998) Stat 3 activation is required for cellular transformation by v-src. Mol. Cell. Biol. 18, 2553–2558.

    CAS  PubMed  Google Scholar 

  59. Turkson, J. and Jove, R. (2000) STAT proteins: novel molecular targets for cancer drug discovery. Oncogene 19, 6613–6626.

    Article  CAS  PubMed  Google Scholar 

  60. Calo, V., Migliavacca, M., Bazan, V., et al. (2003) STAT proteins: from normal control of cellular events to tumorigenesis. J. Cell. Physiol. 197, 157–168.

    Article  CAS  PubMed  Google Scholar 

  61. Turkson, J., Ryan, D., Kim, J. S., et al. (2001) Phosphotyrosyl peptides block Stat3-mediated DNA-binding activity, gene regulation, and cell transformation. J. Biol. Chem. 276, 45,443–45,455.

    Article  CAS  PubMed  Google Scholar 

  62. Nishizuka, Y. (1992) Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258, 607–614.

    Article  CAS  PubMed  Google Scholar 

  63. Kikkawa, U., Takai, Y., Tanaka, Y., Miyake, R., and Nishizuka, Y. (1983) Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J. Biol. Chem. 258, 11,442–11,445.

    CAS  PubMed  Google Scholar 

  64. Blumberg, P. M. (1988) Protein kinase C as the receptor for the phorbol ester tumor promoters: sixth roads memorial award lecture. Cancer Res. 48, 1–8.

    CAS  PubMed  Google Scholar 

  65. Rocha, A. B., Mans, D. R. A., Regner, A., and Schwartsmann, G. (2002) Targeting protein kinase C: new terapeutic opportunities against high-grade malignant gliomas. The Oncologist 7, 17–33.

    Article  PubMed  Google Scholar 

  66. Sioud, M. and Sørensen, D. R. (1998) A nuclease-resistant protein kinase C alpha ribozyme blocks glioma cell growth. Nat. Biotechnol. 16, 556–561.

    Article  CAS  PubMed  Google Scholar 

  67. Leirdal, M. and Sioud, M. (1999) Ribozyme inhinition of the protein kinase Ca triggers apoptosis in glioma cells. Br. J. Cancer. 80, 1558–1564.

    Article  CAS  PubMed  Google Scholar 

  68. Sioud, M. and Leirdal, M. (2000) Design of nuclease resistant protein kinase Ca DNA enzymes with potential therapeutic application. J. Mol. Biol. 296, 937–947.

    Article  CAS  PubMed  Google Scholar 

  69. Geiger, T., Muller, M., Dean, N. M., and Fabbro, D. (1998) Antitumor activity of a PKC-alpha antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted into nude mice. Anticancer Drug Des. 13, 35–45.

    CAS  PubMed  Google Scholar 

  70. Reed, J. C. (1998) Bcl-2 family proteins. Oncogene 17, 3225–3236.

    Article  PubMed  Google Scholar 

  71. Zamzami, N., Brenner, C., Marzo, I., Susin, S. A., and Kroemer, G. (1998) Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16, 2265–2282.

    Article  CAS  PubMed  Google Scholar 

  72. Muchmore, S. W., Sattler, M., Liang, H., et al. (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death Nature 381, 335–341.

    Article  CAS  PubMed  Google Scholar 

  73. Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., et al. (2005) An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature 435, 677–681.

    Article  CAS  PubMed  Google Scholar 

  74. Ziegler, A., Luedke, G. H., Fabbro, D., Altmann, K. H., Stahel, R. A., and Zangemeister-Wittke, U. (1997) A novel antisense oligonucleotide targeting the coding region of the bcl-2_mRNA is a potent inducer of apoptosis in small cell lung cancer cells. J. Natl. Cancer Inst. 89, 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  75. Leech, S. H., Olie, R. A., Gautschi, O., et al. (2000) Induction of apoptosis in lung cancer cells following bcl-xL antisense treatment. Int. J. Cancer. 86, 570–576.

    Article  CAS  PubMed  Google Scholar 

  76. Simoes-Wust, A., Schurpf, T., Hall, J., Stahel, R. A., and Zangmeister-wittke, U. (2002) Bcl-2/bcl-xL bispecific antisense treatment sensitizes breast carcinoma cells to doxorubicin, paclitaxel and cyclophosphoamide. Breast. Cancer. Res. Treat. 76, 157–166.

    Article  PubMed  Google Scholar 

  77. Liotta, L. A. and Kohn, E. C. (2001) The microenvironment of the tumour-host interface. Nature 411, 375–379.

    Article  CAS  PubMed  Google Scholar 

  78. Aharinejad, S., Paulus, P., Sioud, M., et al. (2004) Colony-stimulating factor-1 blockage by antisense oligonucleotides and small-interfering RNAs suppresses growth of human mammary tumor xenografts in mice. Caner Res. 64, 5378–5384.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Sioud, M., Leirdal, M. (2007). Druggable Signaling Proteins. In: Sioud, M. (eds) Target Discovery and Validation Reviews and Protocols. Methods in Molecular Biology™, vol 361. Humana Press. https://doi.org/10.1385/1-59745-208-4:1

Download citation

  • DOI: https://doi.org/10.1385/1-59745-208-4:1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-890-4

  • Online ISBN: 978-1-59745-208-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics