Skip to main content

Mouse Embryonic Stem Cells as a Model Genetic System to Dissect and Exploit the RNA Interference Machinery

  • Protocol
MicroRNA Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 342))

  • 2182 Accesses

Abstract

Conditional gene targeting is often a useful approach to elucidate the in vivo function of a gene. We use this approach to investigate the biological role of the RNA interference (RNAi) pathway in mammals. In addition, the RNAi machinery in mammalian cells can be exploited for gene knock-down experiments. In this chapter, we discuss the variety of experiments that can be performed using genetically engineered embryonic stem (ES) cells. ES cells provide a mammalian genetic system that is physiological, and tractable for mutagenesis and experimentation. This approach is economical and rapid, because it does not require production and breeding of genetically engineered mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dani C., Smith A. G., Dessolin S., et al. (1997) Differentiation of embryonic stem cells into adipocytes in vitro. J. Cell. Sci. 110(Pt 11), 1279–1285.

    Google Scholar 

  2. Kramer J., Hegert C., and Rohwedel J. (2003) In vitro differentiation of mouse ES cells: bone and cartilage. Methods Enzymol. 365, 251–268.

    Article  CAS  PubMed  Google Scholar 

  3. Kawaguchi J., Mee P. J., and Smith A. G. (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36, 758–769.

    Article  CAS  PubMed  Google Scholar 

  4. Fairchild P. J., Brook F. A., Gardner R. L., et al. (2000) Directed differentiation of dendritic cells from mouse embryonic stem cells. Curr. Biol. 10, 1515–1518.

    Article  CAS  PubMed  Google Scholar 

  5. Yamashita J., Itoh H., Hirashima M., et al. (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96.

    Article  CAS  PubMed  Google Scholar 

  6. Nakano T., Kodama H., and Honjo T. (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265, 1098–1101.

    Article  CAS  PubMed  Google Scholar 

  7. Bagutti C., Wobus A. M., Fassler R., and Watt F. M. (1996) Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells. Dev. Biol. 179, 184–196.

    Article  CAS  PubMed  Google Scholar 

  8. Cho S. K. and Zuniga-Pflucker J. C. (2003) Development of lymphoid lineages from embryonic stem cells in vitro. Methods Enzymol. 365, 158–169.

    Article  PubMed  Google Scholar 

  9. de Pooter R. F., Cho S. K., and Zuniga-Pflucker J. C. (2005) In vitro generation of lymphocytes from embryonic stem cells. Methods Mol. Biol. 290, 135–147.

    PubMed  Google Scholar 

  10. Tsai M., Tam S. Y., Wedemeyer J., and Galli S. J. (2002) Mast cells derived from embryonic stem cells: a model system for studying the effects of genetic manipulations on mast cell development, phenotype, and function in vitro and in vivo. Int. J. Hematol. 75, 345–349.

    Article  CAS  PubMed  Google Scholar 

  11. Rohwedel J., Maltsev V., Bober E., Arnold H. H., Hescheler J., and Wobus A. M. (1994) Muscle cell differentiation of embryonic stem cells reflects myogenesis in vivo: developmentally regulated expression of myogenic determination genes and functional expression of ionic currents. Dev. Biol. 164, 87–101.

    Article  CAS  PubMed  Google Scholar 

  12. Strubing C., Ahnert-Hilger G., Shan J., Wiedenmann B., Hescheler J., and Wobus A. M. (1995) Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mech. Dev. 53, 275–287.

    Article  CAS  PubMed  Google Scholar 

  13. Ying Q. L., Stavridis M., Griffiths D., Li M., and Smith A. (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186.

    Article  CAS  PubMed  Google Scholar 

  14. Buttery L. D., Bourne S., Xynos J. D., et al. (2001) Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7, 89–99.

    Article  CAS  PubMed  Google Scholar 

  15. Lumelsky N., Blondel O., Laeng P., Velasco I., Ravin R., and McKay R. (2001) Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1394.

    Article  CAS  PubMed  Google Scholar 

  16. Kanellopoulou C., Muljo S. A., Kung A. L., et al. (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev. 19, 489–501.

    Article  CAS  PubMed  Google Scholar 

  17. Denli A. M. and Hannon G. J. (2003) RNAi: an ever-growing puzzle. Trends Biochem. Sci. 28, 196–201.

    CAS  Google Scholar 

  18. Bernstein E., Caudy A. A., Hammond S. M., and Hannon G. J. (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366.

    Article  CAS  PubMed  Google Scholar 

  19. Hutvagner G., McLachlan J., Pasquinelli A. E., Balint E., Tuschl T., and Zamore P. D. (2001) A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838.

    Article  CAS  PubMed  Google Scholar 

  20. Ketting R. F., Fischer S. E., Bernstein E., Sijen T., Hannon G. J., and Plasterk R. H. (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659.

    Article  CAS  PubMed  Google Scholar 

  21. Knight S. W. and Bass B. L. (2001) A role for the RNase III enzyme DCR-1 in RNA interference and germ line development in Caenorhabditis elegans. Science 293, 2269–2271.

    Article  CAS  PubMed  Google Scholar 

  22. Grishok A., Pasquinelli A. E., Conte D., et al. (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23–34.

    Article  CAS  PubMed  Google Scholar 

  23. Kontgen F., Suss G., Stewart C., Steinmetz M., and Bluethmann H. (1993) Targeted disruption of the MHC class II Aa gene in C57BL/6 mice. Int. Immunol. 5, 957–964.

    Article  CAS  PubMed  Google Scholar 

  24. Seong E., Saunders T. L., Stewart C. L., and Burmeister M. (2004) To knockout in 129 or in C57BL/6: that is the question. Trends Genet. 20, 59–62.

    Article  CAS  PubMed  Google Scholar 

  25. Eggan K., Akutsu H., Loring J., et al. (2001) Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc. Natl. Acad. Sci. USA 98, 6209–6214.

    Article  CAS  PubMed  Google Scholar 

  26. Seibler J., Zevnik B., Kuter-Luks B., et al. (2003) Rapid generation of inducible mouse mutants. Nucleic Acids Res. 31, e12.

    Article  PubMed  Google Scholar 

  27. Casola S. (2004) Conditional gene mutagenesis in B-lineage cells. Methods Mol. Biol. 271, 91–109.

    CAS  PubMed  Google Scholar 

  28. Rajewsky K., Gu H., Kuhn R., et al. (1996) Conditional gene targeting. J. Clin. Invest. 98, 600–603.

    Article  CAS  PubMed  Google Scholar 

  29. Bernstein E., Kim S. Y., Carmell M. A., et al. (2003) Dicer is essential for mouse development. Nat. Genet. 35, 215–217.

    Article  CAS  PubMed  Google Scholar 

  30. Testa G., Vintersten K., Zhang Y., Benes V., Muyrers J. P., and Stewart A. F. (2004) BAC engineering for the generation of ES cell-targeting constructs and mouse transgenes. Methods Mol. Biol. 256, 123–139.

    CAS  PubMed  Google Scholar 

  31. Oberdoerffer P. (2005) Efficiency of RNA interference in the mouse hematopoietic system varies between cell types and developmental stages. Mol. Cell. Biol. 25, 3896–3905.

    Article  CAS  PubMed  Google Scholar 

  32. Magin T. M., McWhir J., and Melton D. W. (1992) A new mouse embryonic stem cell line with good germ line contribution and gene targeting frequency. Nucleic Acids Res. 20, 3795–3796.

    Article  CAS  PubMed  Google Scholar 

  33. Bronson S. K., Plaehn E. G., Kluckman K. D., Hagaman J. R., Maeda N., and Smithies O. (1996) Single-copy transgenic mice with chosen-site integration. Proc. Natl. Acad. Sci. USA 93, 9067–9072.

    Article  CAS  PubMed  Google Scholar 

  34. Mortensen R. M. (2000) Production of a homozygous mutant embryonic stem cell line (double knockout). In: Current Protocols in Molecular Biology (Ausubel F. M., Brent R., Kingston R. E., et al., eds.), John Wiley & Sons New York, pp. 23.26.21–23.26.23.

    Google Scholar 

  35. Mortensen R. M., Conner D. A., Chao S., Geisterfer-Lowrance A. A., and Seidman J. G. (1992) Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12, 2391–2395.

    CAS  PubMed  Google Scholar 

  36. Chen J., Lansford R., Stewart V., Young F., and Alt F. W. (1993) RAG-2-deficient blastocyst complementation: an assay of gene function in lymphocyte development. Proc. Natl. Acad. Sci. USA 90, 4528–4532.

    Article  CAS  PubMed  Google Scholar 

  37. Osoegawa K., Tateno M., Woon P. Y., et al. (2000) Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res. 10, 116–128.

    CAS  PubMed  Google Scholar 

  38. Buehr M. and Smith A. (2003) Genesis of embryonic stem cells. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 1397–1402; discussion 1402.

    Article  CAS  PubMed  Google Scholar 

  39. Burdon T., Stracey C., Chambers I., Nichols J., and Smith A. (1999) Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev. Biol. 210, 30–43.

    Article  CAS  PubMed  Google Scholar 

  40. Smith A. G. (2001) Embryo-derived stem cells: of mice and men. Annu. Rev. Cell. Dev. Biol. 17, 435–462.

    Article  CAS  PubMed  Google Scholar 

  41. Brook F. A. and Gardner R. L. (1997) The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. USA 94, 5709–5712.

    Article  CAS  PubMed  Google Scholar 

  42. Kunieda T., Xian M., Kobayashi E., Imamichi T., Moriwaki K., and Toyoda Y. (1992) Sexing of mouse preimplantation embryos by detection of Y chromosome-specific sequences using polymerase chain reaction. Biol. Reprod. 46, 692–697.

    Article  CAS  PubMed  Google Scholar 

  43. Karolchik D., Baertsch R., Diekhans M., et al. (2003) The UCSC Genome Browser Database. Nucleic Acids Res. 31, 51–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Muljo, S.A., Kanellopoulou, C. (2006). Mouse Embryonic Stem Cells as a Model Genetic System to Dissect and Exploit the RNA Interference Machinery. In: Ying, SY. (eds) MicroRNA Protocols. Methods in Molecular Biology™, vol 342. Humana Press. https://doi.org/10.1385/1-59745-123-1:57

Download citation

  • DOI: https://doi.org/10.1385/1-59745-123-1:57

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-581-1

  • Online ISBN: 978-1-59745-123-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics